點(diǎn)P在平面ABC的射影為O,且PA、PBPC兩兩垂直,那么O是△ABC的(    )
A.內(nèi)心B.外心
C.垂心D.重心
C
由于PCPA,PCPB,所以PC⊥平面PAB,
PCAB
P在平面ABC的射影為O,連CO,則COPC在平面ABC的射影,根據(jù)三垂線定理的逆定理,得:COAB
同理可證AOBC,O是△ABC的垂心,答案選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,,直線分別交,于點(diǎn),,
點(diǎn),,,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,ABCD是矩形,PA⊥平面ABCD,△PAD是等腰三角形,M、N分別是AB、PC的中點(diǎn).求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

平面內(nèi)兩直線有三種位置關(guān)系:相交,平行與重合。已知兩個(gè)相交平面與兩直線,又知內(nèi)的射影為,在內(nèi)的射影為。試寫出滿足的條件,使之一定能成為是異面直線的充分條件                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)S為平面外的一點(diǎn),SA=SB=SC,,若,求證:平面ASC平面ABC。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,底面是正方形,側(cè)棱底面,,的中點(diǎn)。
(1)證明:;
(2)求為軸旋轉(zhuǎn)所圍成的幾何體體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△PAC與△ABC是均以AC為斜邊的等腰直角三角形,AC=4,E,F(xiàn),O分別為PA,PB,AC的中點(diǎn),G為OC的中點(diǎn),且PO⊥平面ABC.
(1)證明:FE平面BOG;
(2)求二面角EO-B-FG的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,BC=2,AB=1,PA丄平面ABCD,BEPA,BE=
1
2
PA
,F(xiàn)為PA的中點(diǎn).
(I)求證:DF平面PEC
(II)若PE=
2
,求平面PEC與平面PAD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直四棱柱A1B1C1D1ABCD中,當(dāng)?shù)酌嫠倪呅?i>ABCD滿足條件        時(shí),有A1CB1D1(注:填上你認(rèn)為正確的一種條件即可,不必考慮所有可能的情形).

查看答案和解析>>

同步練習(xí)冊(cè)答案