如圖,已知:橢圓M的中心為O,長軸的兩個(gè)端點(diǎn)為A、B,右焦點(diǎn)為F,AF=5BF.若橢圓M經(jīng)過點(diǎn)C,C在AB上的射影為F,且△ABC的面積為5.
(Ⅰ)求橢圓M的方程;
(Ⅱ)已知圓O:=1,直線=1,試證明:當(dāng)點(diǎn)P(m,n)在橢圓M上運(yùn)動(dòng)時(shí),直線l與圓O恒相交;并求直線l被圓O截得的弦長的取值范圍.
解:(Ⅰ)由題意設(shè)橢圓方程為,半焦距為c,
AF=5BF,且AF=a+c,BF=a-c,
a+c=5(a-c),得2a=3c.①
由題意CFAB,設(shè) 點(diǎn)C坐標(biāo)(c,y),CM上,
代入得

由△ABC的面積為5,得=5②
由①②得a=3, c=2.
=9-4=5.
∴所求橢圓M的方程為:
(Ⅱ) 圓O到直線=1距離d=
由點(diǎn)P(m,n)在橢圓M上,則,
顯然
1,>1,
d =<1,
而圓O的半徑為1,直線l與圓O恒相交.弦長t=2=2,
,
, t=2,
,,
,
弦長t的取值范圍是[].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知半徑為r的圓M的內(nèi)接四邊形ABCD的對(duì)角線AC和BD相互垂直且交點(diǎn)為P.
精英家教網(wǎng)
(1)若四邊形ABCD中的一條對(duì)角線AC的長度為d(0<d<2r),試求:四邊形ABCD面積的最大值;
(2)試探究:當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABCD的面積取得最大值,最大值為多少?
(3)對(duì)于之前小題的研究結(jié)論,我們可以將其類比到橢圓的情形.如圖2,設(shè)平面直角坐標(biāo)系中,已知橢圓Γ:
x2
a2
+
y2
b2
=1
(a>b>0)的內(nèi)接四邊形ABCD的對(duì)角線AC和BD相互垂直且交于點(diǎn)P.試提出一個(gè)由類比獲得的猜想,并嘗試給予證明或反例否定.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浦東新區(qū)二模)(1)設(shè)橢圓C1
x2
a2
+
y2
b2
=1
與雙曲線C29x2-
9y2
8
=1
有相同的焦點(diǎn)F1、F2,M是橢圓C1與雙曲線C2的公共點(diǎn),且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點(diǎn)、公共對(duì)稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.設(shè)“盾圓D”上的任意一點(diǎn)M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
(3)由拋物線弧E1:y2=4x(0≤x≤
2
3
)與第(1)小題橢圓弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封閉曲線為“盾圓E”.設(shè)過點(diǎn)F(1,0)的直線與“盾圓E”交于A、B兩點(diǎn),|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知:橢圓M的中心為O,長軸的兩個(gè)端點(diǎn)為A、B,右焦點(diǎn)為F,AF=5BF.若橢圓M經(jīng)過點(diǎn)C,C在AB上的射影為F,且△ABC的面積為5.
(Ⅰ)求橢圓M的方程;
(Ⅱ)已知圓O:x2+y2=1,直線l:mx+ny=1,試證明:當(dāng)點(diǎn)P(m,n)在橢圓M上運(yùn)動(dòng)時(shí),直線l與圓O恒相交;并求直線l被圓O截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省無錫市濱湖區(qū)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,已知:橢圓M的中心為O,長軸的兩個(gè)端點(diǎn)為A、B,右焦點(diǎn)為F,AF=5BF.若橢圓M經(jīng)過點(diǎn)C,C在AB上的射影為F,且△ABC的面積為5.
(Ⅰ)求橢圓M的方程;
(Ⅱ)已知圓O:x2+y2=1,直線l:mx+ny=1,試證明:當(dāng)點(diǎn)P(m,n)在橢圓M上運(yùn)動(dòng)時(shí),直線l與圓O恒相交;并求直線l被圓O截得的弦長的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案