已知集合A={x|x2-3x-4≤0},B={x|x=
3
2k-1
,x∈Z,k∈Z},則A∩B=( 。
A、{-1,1}
B、{-1,1,3}
C、{-3,-1,1}
D、{-3,-1,1,3}
考點:交集及其運算
專題:集合
分析:求出A中不等式的解集確定出A,確定出B中整數(shù)x的值確定出B,求出A與B的交集即可.
解答: 解:由A中不等式變形得:(x-4)(x+1)≤0,
解得:-1≤x≤4,即A=[-1,4],
由B中x=
3
2k-1
,x∈Z,k∈Z,得到2k-1可能為-3,-1,1,3,
解得:k=-1,0,1,2,即x=-1,-3,3,1,
∴B={-3,-1,1,3},
則A∩B={-1,1,3},
故選:B.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

tan300°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。
A、“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B、“向量
a
,
b
c
,若
a
b
=
a
c
,則
b
=
c
”是真命題
C、“?x∈R,x2+1>0”的否定是“?x0∈R,x02+1<0”
D、“若a=
π
6
,則sina=
1
2
”的否命題是“若a
π
6
,則sina
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

令f(x)=
1
x+1
,則:f(1)+f(2)+…+f(2011)+f(
1
2011
)+f(
1
2010
)+…+f(
1
2
)+f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log 
1
2
(x2+3x-4)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2-x
lg(2x-2)
的定義域為( 。
A、[1,2]
B、(1,2]
C、(1,
3
2
)∪(
3
2
,2]
D、[1,
3
2
)∪(
3
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2x2-3x-2<0},集合B={x|
2x+1
x-1
≥1},則A∩B=( 。
A、(-
1
2
,2)
B、(1,2)
C、[1,2)
D、(-
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2ax+
1
x
(a∈R).
(1)當(dāng)0<a≤
1
2
時,試判斷f(x)在(0,1]上的單調(diào)性并用定義證明你的結(jié)論;
(2)對于任意的x∈(0,1],使得f(x)≥6恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的長軸長是短軸長的
3
倍,F(xiàn)1,F(xiàn)2是它的左,右焦點.
(1)若P∈C,且
PF1
PF2
=0,|PF1|•|PF2|=4,求F1,F(xiàn)2的坐標(biāo);
(2)在(1)的條件下,過動點Q作以F2為圓心、以1為半徑的圓的切線QM(M是切點),且使|QF1|=
2
|QM
|,求動點Q的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案