在△ABC中,下列等式總能成立的是


  1. A.
    acosC=ccosA
  2. B.
    bsinC=csinA
  3. C.
    absinC=bcsinB
  4. D.
    asinC=csinA
D
分析:由正弦定理可得a=2RsinA,b=2RsinB,c=2RsinC,代入各選項分別進行檢驗,即可判斷
解答:A:由正弦定理可得,acosC-ccosA=2RsinAcosC-2RsinCcosA=2Rsin(A-C)=0不一定成立,
即acosC=ccosA 不一定成立,A錯誤
B:由正弦定理可得,bsinC-csinA=2RsinBsinC-2RsinCsinA=2RsinC(sinB-sinC)=0不一定成立,即bsinC=csinA不一定成立,B錯誤
C:由正弦定理可得absinC-bcsinB=2bR(sinAsinC-sinCsinB)=2bRsinC(sinA-sinB)=0不一定成立,即absinC=bcsinB不一定成立,C錯誤
D:由正弦定理可得,asinC-csinA=2RsinAsinC-2RsinCsinA=0,即asinC=csinA一定成立,D正確
故選D
點評:本題主要考查了三角形的正弦定理在解三角形中的應用,屬于公式的基本應用,屬于基礎性試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,給出下列四個命題:
①若sin2A=sin2B,則△ABC必是等腰三角形;
②若sinA=cosB,則△ABC必是直角三角形;
③若cosA•cosB•cosC<0,則△ABC必是鈍角三角形;
④若cos(A-B)•cos(B-C)•cos(C-A)=1,則△ABC必是等邊三角形.
以上命題中正確的命題的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,給出下列四個命題:
①若sin2A=sin2B,則△ABC為等腰三角形;
②若sinA=cosB,則△ABC是直角三角形;
③若cosA•cosB•cosC<0,則△ABC是鈍角三角形;
④若cos(A-B)•cos(B-C)•cos(C-A)=1,則△ABC是等邊三角形.
以上命題正確的是
 
(填命題序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,下列命題中正確的有:
③⑤
③⑤

AB
-
AC
=
BC
;                
②若
AC
AB
>0
,則△ABC為銳角三角形;
③O是△ABC所在平面內(nèi)一定點,動點P滿足
OP
=
0A
+λ(
AB
+
AC
)
,λ∈[0,+∞),則動點P一定過△ABC的重心;
④O是△ABC內(nèi)一定點,且
OA
+
OC
+2
OB
=
0
,則
S△AOC
S△ABC
=
1
3

⑤若(
AB
AB
+
AC
AC
)•
BC
=0,且
AB
AB
AC
AC
=
1
2
,則△ABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別a,b,c,給出下列結論:
①A>B>C,則sinA>sinB>sinC;
②若
sinA
a
=
cosB
b
=
cosC
c
,△ABC為等邊三角形;
③必存在A,B,C,使tanAtanBtanC<tanA+tanB+tanC成立;
④若a=40,b=20,B=25°,△ABC必有兩解.
其中,結論正確的編號為
①④
①④
(寫出所有正確結論的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列結論中一定成立的是(  )

查看答案和解析>>

同步練習冊答案