已知為拋物線的焦點(diǎn),點(diǎn)為拋物線內(nèi)一定點(diǎn),點(diǎn)為拋物線上一動(dòng)點(diǎn),最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于、兩點(diǎn),求的面積.
(1).(2)
解析試題分析:(1)設(shè)為點(diǎn)到的距離,則由拋物線定義,,
所以當(dāng)點(diǎn)為過點(diǎn)且垂直于準(zhǔn)線的直線與拋物線的交點(diǎn)時(shí),
取得最小值,即,解得
∴拋物線的方程為.
(2)設(shè),聯(lián)立得,
顯然,
,
.
又到直線的距離為,
考點(diǎn):本題主要考查拋物線的定義,直線與拋物線的位置關(guān)系,點(diǎn)到直線的距離公式,三角形面積公式。
點(diǎn)評(píng):中檔題,涉及“拋物線內(nèi)一定點(diǎn),點(diǎn)為拋物線上一動(dòng)點(diǎn),求最小值”問題,往往利用拋物線定義,“化折為直”。涉及拋物線與直線位置關(guān)系問題,往往利用韋達(dá)定理。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,點(diǎn)到兩點(diǎn),的距離之和等于4,設(shè)點(diǎn)的軌跡為.
(Ⅰ)寫出的方程;
(Ⅱ)設(shè)直線與交于兩點(diǎn).k為何值時(shí)?此時(shí)的值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線的離心率且點(diǎn)在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)拋物線()的準(zhǔn)線與軸交于,焦點(diǎn)為;以、為焦點(diǎn),離心率的橢圓與拋物線在軸上方的一個(gè)交點(diǎn)為.
(1)當(dāng)時(shí),求橢圓的方程;
(2)在(1)的條件下,直線經(jīng)過橢圓的右焦點(diǎn),與拋物線交于、,如果以線段為直徑作圓,試判斷點(diǎn)與圓的位置關(guān)系,并說明理由;
(3)是否存在實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)及,點(diǎn)在以、為焦點(diǎn)的橢圓上,且、、構(gòu)成等差數(shù)列.
(1)求橢圓的方程;
(2)如圖7,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn)是直線上的兩點(diǎn),且,. 求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC。
(1)求AB和OC的長(zhǎng);
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合)。過點(diǎn)E作直線l平行BC,交AC于點(diǎn)D。設(shè)AE的長(zhǎng)為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)在平面直角坐標(biāo)系中,是拋物線的焦點(diǎn),是拋物線上位于第一象限內(nèi)的任意一點(diǎn),過三點(diǎn)的圓的圓心為,點(diǎn)到拋物線的準(zhǔn)線的距離為.
(Ⅰ)求拋物線的方程;
(Ⅱ)是否存在點(diǎn),使得直線與拋物線相切于點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為.
(I)求橢圓方程;
(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
如圖,橢圓長(zhǎng)軸端點(diǎn)為,為橢圓中心,為橢圓的右焦點(diǎn),
且,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問:是否存在直線,使點(diǎn)恰為的垂心?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com