如圖,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=,M是CC1的中點(diǎn),求證:AB1⊥A1M.
證:連AC1,在直角ΔABC中,BC=1,∠BAC=30°, ∴AC=A1C1=. 設(shè)∠AC1A1=α,∠MA1C1=β ∴tanα===, tgβ===. ∵cot(α+β)===0, ∴α+β=90° 即AC1⊥A1M. ∵B1C1⊥C1A1,CC1⊥B1C1,∴B1C1⊥平面AA1CC1, AC1是AB1在平面AA1C1C上的射影. ∵AC1⊥A1M,∴由三垂線定理得A1M⊥AB1. 解析:不難看出B1C1⊥平面AA1C1C,AC1是AB1在平面AA1C1C上的射影.欲證A1M⊥AB1,只要能證A1M⊥AC1就可以了. 評注:本題在證AC1⊥A1M時(shí),主要是利用三角函數(shù),證α+β=90°,與常見的其他題目不太相同. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com