判斷以,,,為頂點(diǎn)的四邊形的形狀,并說(shuō)明理由.

答案:略
解析:

解:由已知,得

,,,

又直線的斜率,直線的斜率

因?yàn)?/FONT>,所以

因此,四邊形是正方形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數(shù)y=
1
4
x+
1
12
圖象上的點(diǎn),點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點(diǎn),其中x1=a(0<a<1),對(duì)于任意n∈N,點(diǎn)An、Bn、An+1構(gòu)成以
Bn為頂點(diǎn)的等腰三角形.
(1)求{yn}的通項(xiàng)公式,且證明{yn}是等差數(shù)列;
(2)試判斷xn+2-xn是否為同一常數(shù)(不必證明),并求出數(shù)列{xn}的通項(xiàng)公式;
(3)在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此時(shí)a值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義{a,b,c}為函數(shù)y=ax2+bx+c的“特征數(shù)”.如:函數(shù)y=x2-2x+3的“特征數(shù)”是{1,-2,3},函數(shù)y=2x+3的“特征數(shù)”是{0,2,3,},函數(shù)y=-x的“特征數(shù)”是{0,-1,0}
(1)將“特征數(shù)”是{0,
3
3
,1
}的函數(shù)圖象向下平移2個(gè)單位,得到的新函數(shù)的解析式是
y=
3
3
x-1
y=
3
3
x-1
; (答案寫(xiě)在答卷上)
(2)在(1)中,平移前后的兩個(gè)函數(shù)分別與y軸交于A、B兩點(diǎn),與直線x=
3
分別交于D、C兩點(diǎn),在平面直角坐標(biāo)系中畫(huà)出圖形,判斷以點(diǎn)A、B、C、D為頂點(diǎn)的四邊形形狀,并說(shuō)明理由;
(3)若(2)中的四邊形與“特征數(shù)”是{1,-2b,b2+
1
2
}的函數(shù)圖象的有交點(diǎn),求滿足條件的實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O1:(x-1)2+y2=9,⊙O2x2+y2-10x+m2-2m+17=0(m∈R)
(Ⅰ)求⊙O2半徑的最大值;
(Ⅱ)當(dāng)⊙O2半徑最大時(shí),試判斷⊙O1和⊙O2的位置關(guān)系;
(Ⅲ)⊙O2半徑最大時(shí),如果⊙O1和⊙O2相交.
(1)求⊙O1和⊙O2公共弦所在直線l1的方程;
(2)設(shè)直線l1交x軸于點(diǎn)F,拋物線C以坐標(biāo)原點(diǎn)O為頂點(diǎn),以F為焦點(diǎn),直線l2:y=k(x-3)(k≠0)與拋物線C相交于A、B兩點(diǎn),證明:
OA
OB
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷以,,,為頂點(diǎn)的四邊形的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案