已知數(shù)列{an}滿足,a1=2
(I)求證:數(shù)列{an}的通項公式為an=n(n+1)
(II)求數(shù)列的前n項和Tn;
(III)是否存在無限集合M,使得當n∈M時,總有成立.若存在,請找出一個這樣的集合;若不存在,請說明理由.
【答案】分析:(I)由3Sn=(n+2)an,得3Sn-1=(n+1)an-1(n≥2),二式相減得,然后利用疊乘法可求出數(shù)列{an}的通項公式,從而證得結(jié)論;
(II)將裂項得,然后進行求和即可;
(III)令,可求出滿足條件的n,從而得到集合M.
解答:證明:(I)由3Sn=(n+2)an
得3Sn-1=(n+1)an-1(n≥2)
二式相減得3an=(n+2)an-(n+1)an-1
∴(n-1)an=(n+1)an-1


疊乘得:an=n(n+1)(n∈N*)(7分)
(II)∵
(10分)
(III)令
得:n+1>10,n>9
故滿足條件的M存在,M={n∈N|n>9,n∈N*}是一個這樣的集合(12分)
點評:本題主要考查了數(shù)列與不等式的綜合,以及裂項求和法的應(yīng)用,同時考查了計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn;
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊答案