已知是橢圓的兩個(gè)焦點(diǎn), 若存在點(diǎn)P為橢圓上一點(diǎn), 使得 , 則橢圓離心率的取值范圍是
A.B.
C.D.
C
設(shè)根據(jù)橢圓定義得:
由余弦定理得:.由(1),(2)得:
;又,于是有
,故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)分別為橢圓的左、右焦點(diǎn),點(diǎn)為橢圓上任意一點(diǎn),到焦點(diǎn)的距離的最大值為,且的最大面積為.
(I)求橢圓的方程。
(II)點(diǎn)的坐標(biāo)為,過點(diǎn)且斜率為的直線與橢圓相交于兩點(diǎn)。對(duì)于任意的是否為定值?若是求出這個(gè)定值;若不是說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,橢圓上的點(diǎn)到焦點(diǎn)的距離為2,的中點(diǎn),則為坐標(biāo)原點(diǎn))的值為
A.8B.2C.4D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在原點(diǎn)的橢圓的一個(gè)焦點(diǎn)為為橢圓上一點(diǎn),的面積為
(1)求橢圓的方程;
(2)是否存在平行于的直線,使得直線與橢圓相交于兩點(diǎn),且以線段為有經(jīng)的圓恰好經(jīng)過原點(diǎn)?若存在,求出的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)已知橢圓的離心率為,直線
與橢圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直與橢圓的長(zhǎng)軸,動(dòng)直線垂直于直線于點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( 12分)如圖,橢圓的方程為,其右焦點(diǎn)為F,把橢圓的長(zhǎng)軸分成6等分,過每個(gè)等分點(diǎn)作x軸的垂線交橢圓上半部于點(diǎn)P1,P2,P3,P4,P5五個(gè)點(diǎn),且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=5.

(1)求橢圓的方程;
(2)設(shè)直線lF點(diǎn)(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(.(本小題滿分12分)
如圖,焦距為2的橢圓E的兩個(gè)頂點(diǎn)分別為,且共線.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與橢圓E有兩個(gè)不同的交點(diǎn)PQ,且原點(diǎn)O總在以PQ為直徑的圓的內(nèi)部,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求的最大值和最小值;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知橢圓的兩焦點(diǎn)為F1),F2(1,0),直線x = 4是橢圓的一條準(zhǔn)線.
(1)求橢圓方程;
(2)設(shè)點(diǎn)P在橢圓上,且,求cos∠F1PF2的值;
(3)設(shè)P是橢圓內(nèi)一點(diǎn),在橢圓上求一點(diǎn)Q,使得最小.

查看答案和解析>>

同步練習(xí)冊(cè)答案