已知f(x+
1
x
)=(x-
1
x
)2
,則f(x)=
x2-4
x2-4
分析:將等式右邊配成x+
1
x
的形式,利用(a-b)2=(a+b)2-4ab之間的關(guān)系,求函數(shù)f(x)的表達(dá)式即可.
解答:解:∵f(x+
1
x
)=(x-
1
x
)2
=(x+
1
x
)2-4

∴f(x)=x2-4.
故答案為:x2-4.
點(diǎn)評:本題主要考查函數(shù)解析式的求法,利用換元法和配湊法是解決復(fù)合函數(shù)解析式的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

例2、(1)已知f(x+
1
x
)=x3+
1
x3
,求f(x).
(2)已知f(
2
x
+1)=lgx
,求f(x).
(3)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x).
(4)已知f(x)滿足2f(x)+f(
1
x
)=3x
,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
x
-1

(1)求函數(shù)f(x)的定義域;
(2)判斷并用定義證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x+
1
x
)=x2+
1
x2
-x-
1
x
-2,則f(x)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
x+1
(x≤1)
x-1
(x>1)
,則f[f(2)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x-
1
x
) =x2+
1
x2
,則f(x+1)的表達(dá)式為
(x+1)2+2
(x+1)2+2

查看答案和解析>>

同步練習(xí)冊答案