設(shè)f(x)定義在R上的偶函數(shù),且,又當(dāng)x∈(0,3]時(shí),f(x)=2x,則f(2007)=   
【答案】分析:可得f(x)是以6為周期的周期函數(shù),則f(2007)=f(6×334+3)=f(3),再由x∈(0,3]時(shí),f(x)=2x求解.
解答:解:由可得

∴f(x)是以6為周期的周期函數(shù),
又∵又當(dāng)x∈(0,3]時(shí),f(x)=2x,
∴f(2007)=f(6×334+3)=f(3)=6
故答案為:6
點(diǎn)評(píng):本題主要考查函數(shù)的周期性,來(lái)轉(zhuǎn)化自變量所在的區(qū)間進(jìn)而來(lái)求函數(shù)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)定義在R上的偶函數(shù),且f(x+3)=-
1f(x)
,又當(dāng)x∈(0,3]時(shí),f(x)=2x,則f(2007)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)定義在R+上,對(duì)于任意a、b∈R+,有f(ab)=f(a)+f(b)求證:
(1)f(1)=0;
(2)f(
1x
)=-f(x);
(3)若x∈(1,+∞)時(shí),f(x)<0,則f(x)在(1,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、設(shè)f(x)定義在R上的奇函數(shù),且f(x+3)=-f(x),則f(2010)=
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)定義在R+上,對(duì)于任意a、b∈R+,有f(ab)=f(a)+f(b)求證:
(1)f(1)=0;
(2)f(數(shù)學(xué)公式)=-f(x);
(3)若x∈(1,+∞)時(shí),f(x)<0,則f(x)在(1,+∞)上是減函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案