已知集合數(shù)學(xué)公式,集合B={x|(x-a)(x-3a)<0},若A∩B=∅,求實(shí)數(shù)a的取值范圍.

解:解不等式=,可得 0<3-x≤4,即-1≤x<3,故A=[-1,3).
由不等式(x-a)(x-3a)<0可得,當(dāng)a=0時(shí),此不等式解集為∅,集合B=∅,滿(mǎn)足A∩B=∅.
當(dāng) a>0 時(shí),集合B=(a,3a),由A∩B=∅可得,a≥3.
當(dāng)a<0時(shí),集合B=(3a,a),由A∩B=∅可得,a≤-1.
綜上可得,a≤-1或a=0或a≥3.…(14分)
分析:解對(duì)數(shù)不等式求出A,分a=0、a>0、a<0三種情況,分別求出B,再由A∩B=∅求出實(shí)數(shù)a的取值范圍.
點(diǎn)評(píng):本題主要考查對(duì)數(shù)不等式、一元二次不等式的解法,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、已知集合A,B,全集∪,給出下列四個(gè)命題
(1)若A⊆B,則A∪B=B;
(2)若A∪B=B,則A∩B=B;
(3)若a∈(A∩CUB),則a∈A;
(4)若a∈CU(A∩B),則a∈(A∪B).
則上述正確命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)已知集合A={(x,y)|0≤y≤sinx,0≤x≤π},集合B={(x,y)|(x-2)2+(y-2)2≤8},在集合B中任意取一點(diǎn)P,則P∈A的概率是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、理科數(shù)學(xué)(北京卷) 題型:044

已知集合A={a1,a2,…ax}(k≥2),其中,由中的元素構(gòu)成兩個(gè)相應(yīng)的集合:,.其中(a,b)是有序數(shù)對(duì),集合S和T中的元素個(gè)數(shù)分別為m和n.若對(duì)于任意的,總有,則稱(chēng)集合A具有性質(zhì)P.

(1)

檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫(xiě)出相應(yīng)的集合S和T;

(2)

對(duì)任何具有性質(zhì)P的集合A,證明:

(3)

判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知集合A,B,全集∪,給出下列四個(gè)命題
(1)若A⊆B,則A∪B=B;
(2)若A∪B=B,則A∩B=B;
(3)若a∈(A∩CUB),則a∈A;
(4)若a∈CU(A∩B),則a∈(A∪B).
則上述正確命題的個(gè)數(shù)為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)綜合訓(xùn)練試卷(08)(解析版) 題型:選擇題

已知集合A,B,全集∪,給出下列四個(gè)命題
(1)若A⊆B,則A∪B=B;
(2)若A∪B=B,則A∩B=B;
(3)若a∈(A∩CUB),則a∈A;
(4)若a∈CU(A∩B),則a∈(A∪B).
則上述正確命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案