【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過橢圓的右焦點且與圓相切.

(1)求橢圓 的方程;

(2)若直線與圓相切于點, 且交橢圓兩點,射線于橢圓交于點,設的面積與的面積分別為.

①求的最大值; ②當取得最大值時,求的值.

【答案】(1); (2).

【解析】

(1)根據(jù)已知得到a,b,c的方程,解方程組即得橢圓的標準方程.(2) ①先把直線和橢圓的方程聯(lián)立計算出,再計算出弦長|AB|,即得的最大值;②先計算出,最后計算.

(1)依題直線的斜率.設直線的方程為,

依題有:

(2)由直線與圓相切得: .

.將直線代入橢圓的方程得:

.

設點到直線的距離為,故的面積為:

,

.等號成立.故的最大值為1.

,由直線與圓相切于點,可得,

.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}(n≥1,n∈N)滿足a1=2,a2=6,且(an+2﹣an+1)﹣(an+1﹣an)=2,若[x]表示不超過x的最大整數(shù),則[ + +…+ ]=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x+ |(a>0)
(1)當a=2時,求不等式f(x)>3的解集;
(2)證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為 ,(t為參數(shù)),以坐標原點為極點,x正半軸為極軸,建立極坐標系,曲線C的極坐標方程是ρ=
(1)寫出直線l的極坐標方程與曲線C的直角坐標方程.
(2)若點P是曲線C上的動點,求點P到直線l的距離的最小值,并求出此時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點為,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段的垂直平分線與的交點的軌跡為曲線,若,且是曲線上不同的點,滿足,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是的⊙O直徑,CB與⊙O相切于B,E為線段CB上一點,連接AC、AE分別交⊙O于D、G兩點,連接DG交CB于點F.

(1)求證:C、D、G、E四點共圓.
(2)若F為EB的三等分點且靠近E,EG=1,GA=3,求線段CE的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市8所中學生參加比賽的得分用莖葉圖表示(如圖)其中莖為十位數(shù),葉為個位數(shù),則這組數(shù)據(jù)的平均數(shù)和方差分別是(

A.91 5.5
B.91 5
C.92 5.5
D.92 5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交BC于點E,AB=2AC,

(1)求證:BE=2AD;
(2)求函數(shù)AC=1,BC=2時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 (a>b>0)右頂點與右焦點的距離為 ﹣1,短軸長為2
(1)求橢圓的方程;
(2)過左焦點F的直線與橢圓分別交于A、B兩點,若三角形OAB的面積為 ,求直線AB的方程.

查看答案和解析>>

同步練習冊答案