【題目】在直角坐標(biāo)系xOy中,已知點P(1,﹣2),直線l: (m 為參數(shù)),以坐標(biāo)原點為極點,以 x軸的正半軸為極軸建立極坐標(biāo)系;曲線C的極坐標(biāo)方程為ρsin2θ=3cosθ;直線l與曲線C的交點為A,B.
(1)求直線l和曲線C的普通方程;
(2)求 + 的值.
【答案】
(1)解:在平面直角坐標(biāo)系xOy中直線l: (m 為參數(shù))的參數(shù)方程轉(zhuǎn)化為普通方程為:x﹣y﹣3=0.
曲線C的極坐標(biāo)方程為ρsin2θ=3cosθ轉(zhuǎn)化為普通方程為;y2=2x.
(2)把直線l: (m 為參數(shù))轉(zhuǎn)化為: ,代入曲線方程;y2=2x.
得到:
求得:t1+t2=6 ,t1t2=4
所以: + = = = .
【解析】(1)對參數(shù)方程進(jìn)行消參得到普通方程,對極坐標(biāo)方程進(jìn)行轉(zhuǎn)化得到普通方程;(2)將直線l的方程轉(zhuǎn)化為t的參數(shù)方程,并代入到曲線方程中,根據(jù)t的幾何意義可求得值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判.每局比賽結(jié)束時,負(fù)的一方在下局當(dāng)裁判,假設(shè)每局比賽中,甲勝乙的概率為 ,甲勝丙、乙勝丙的概率都是 ,各局比賽的結(jié)果相互獨立,第一局甲當(dāng)裁判.
(1)求第3局甲當(dāng)裁判的概率;
(2)記前4局中乙當(dāng)裁判的次數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}中的a2、a4032是函數(shù) 的兩個極值點,則log2(a2a2017a4032)=( )
A.
B.4
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點F是拋物線τ:x2=2py (p>0)的焦點,點A是拋物線上的定點,且 =(2,0),點B,C是拋物線上的動點,直線AB,AC斜率分別為k1 , k2 .
(I)求拋物線τ的方程;
(Ⅱ)若k1﹣k2=2,點D是點B,C處切線的交點,記△BCD的面積為S,證明S為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為矩形,M是AD上一點.
(1)求證:AB⊥PM;
(2)若N是PB的中點,且AN∥平面PCM,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知PC⊥平面ABC,AC=2 ,PC=BC,AB=4,∠BAC=30°. 點D是線段AB上靠近B的四等分點,PE∥CB,PC∥EB.
(Ⅰ)證明:直線AB⊥平面PCD;
(Ⅱ)若F為線段AC上靠近C的四等分點,求平面PDF與平面CBD所成銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第五屆北京農(nóng)業(yè)嘉年華于2017年3月11日至5月7日在昌平區(qū)興壽鎮(zhèn)草莓博覽園中舉辦,設(shè)置“三館兩園一帶一谷一線”八大功能板塊.現(xiàn)安排六名志愿者去其中的“三館兩園”參加志愿者服務(wù)工作,若每個“館”與“園”都至少安排一人,則不同的安排方法種數(shù)為( )
A.C A
B.5C A
C.5A
D.C A
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com