如圖,在5×5的正方形表格中尚有21個空格,若在每一個空格中填入一個正整數(shù),使得每一行、每一列及兩條對角線上的數(shù)都分別成等比數(shù)列,則字母A所代表的正整數(shù)是_____________.

答案:8  記i行j列的數(shù)為aij,由對角線上的數(shù)成等比數(shù)列知:a11=1,a22=4,a33=16,a44=64,又最后一行成等比數(shù)列知:a42=32,a43=64,a44=128,又第四列成等比數(shù)列,故A=8.

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)海事救援船對一艘失事船進(jìn)行定位:以失事船的當(dāng)前位置為原點,以正北方向為y軸正方向建立平面直角坐標(biāo)系(以1海里為單位長度),則救援船恰好在失事船正南方向12海里A處,如圖,現(xiàn)假設(shè):
①失事船的移動路徑可視為拋物線y=
1249
x2

②定位后救援船即刻沿直線勻速前往救援;
③救援船出發(fā)t小時后,失事船所在位置的橫坐標(biāo)為7t
(1)當(dāng)t=0.5時,寫出失事船所在位置P的縱坐標(biāo),若此時兩船恰好會合,求救援船速度的大小和方向.
(2)問救援船的時速至少是多少海里才能追上失事船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

海事救援船對一艘失事船進(jìn)行定位:以失事船的當(dāng)前位置為原點,以正北方向為y軸正方向建立平面直角坐標(biāo)系(以1海里為單位長度),則救援船恰在失事船的正南方向12海里A處,如圖.現(xiàn)假設(shè):
①失事船的移動路徑可視為拋物線y=
1249
x2
;
②定位后救援船即刻沿直線勻速前往救援;
③救援船出發(fā)t小時后,失事船所在位置的橫坐標(biāo)為7t.
(1)當(dāng)t=0.5時,寫出失事船所在位置P的縱坐標(biāo).若此時兩船恰好會合,求救援船速度的大小和方向;
(2)問救援船的時速至少是多少海里才能追上失事船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年普通高等學(xué)校招生全國統(tǒng)一考試上海卷數(shù)學(xué)文科 題型:044

海事救援船對一艘失事船進(jìn)行定位:以失事船的當(dāng)前位置為原點,以正北方向為y軸正方向建立平面直角坐標(biāo)系(以1海里為單位長度),則救援船恰好在失事船正南方向12海里A處,如圖,現(xiàn)假設(shè):①失事船的移動路徑可視為拋物線y=;②定位后救援船即刻沿直線勻速前往救援;③救援船出發(fā)t小時后,失事船所在位置的橫坐標(biāo)為7t.

(1)當(dāng)t=0.5時,寫出失事船所在位置P的縱坐標(biāo),若此時兩船恰好會合,求救援船速度的大小和方向;

(2)問救援船的時速至少是多少海里才能追上失事船?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1-1-5,長方體ABCD—A1B1C1D1中,AB=3,BC=2,BB1=1,由A到C1在正方體表面上的最短距離為多少?

           圖1-1-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高考真題 題型:解答題

海事救援船對一艘失事船進(jìn)行定位:以失事船的當(dāng)前位置為原點,以正北方向為y軸正方向建立平面直角坐標(biāo)系(以1海里為單位長度),則救援船恰好在失事船正南方向12海里A處,如圖,現(xiàn)假設(shè):
①失事船的移動路徑可視為拋物線;
②定位后救援船即刻沿直線勻速前往救援;
③救援船出發(fā)t小時后,失事船所在位置的橫坐標(biāo)為7t。
(1)當(dāng)t=0.5時,寫出失事船所在位置P的縱坐標(biāo),若此時兩船恰好會合,求救援船速度的大小和方向。
(2)問救援船的時速至少是多少海里才能追上失事船?

查看答案和解析>>

同步練習(xí)冊答案