13 |
4 |
5 |
2 |
1 |
k1k2 |
1 |
k2k3 |
1 |
knkn+1 |
5 |
2 |
3 |
2 |
13 |
4 |
5 |
4 |
3 |
2 |
5 |
4 |
2n+3 |
2 |
12n+5 |
4 |
1 |
kn-1kn |
1 |
(2n+1)(2n+3) |
1 |
2 |
1 |
(2n+1) |
1 |
(2n+3) |
1 |
k1k2 |
1 |
k2k3 |
1 |
kn-1kn |
1 |
2 |
1 |
5 |
1 |
7 |
1 |
7 |
1 |
9 |
1 |
2n+1 |
1 |
2n+3 |
1 |
2 |
1 |
5 |
1 |
2n+3 |
1 |
10 |
1 |
4n+6 |
科目:高中數(shù)學(xué) 來源: 題型:
13 |
4 |
5 |
2 |
1 |
k1k2 |
1 |
k2k3 |
1 |
knkn+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣西南寧二中2012屆高三8月月考數(shù)學(xué)理科試題 題型:044
在平面直角坐標(biāo)上有一點列對一切正整數(shù)n,點Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項,-1為公差的等差數(shù)列{xn}.
(Ⅰ)求點Pn的坐標(biāo);
(Ⅱ)設(shè)拋物線列中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點為Pn,且過點Dn(0,n2+1).記與拋物線Cn相切于點Dn的直線的斜率為Kn,求的值;
(Ⅲ)設(shè),等差數(shù)列{an}的任一項an∈S∩T,其中中的最大數(shù),-265<a0<-125,求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市學(xué)軍中學(xué)高三第六次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com