已知函數(shù)).
(1)若函數(shù)處取得極大值,求的值;
(2)時,函數(shù)圖象上的點都在所表示的區(qū)域內(nèi),求的取值范圍;
(3)證明:,.

(1) ;(2) .
(3)數(shù)學(xué)歸納法可知,,

解析試題分析:(1),由 經(jīng)檢驗符合題意 (3分)
(2)依題意知,不等式恒成立.令,
當(dāng)k≤0時,取x=1,有,故k≤0不合.(4分)
當(dāng)k>0時, g′(x)=-2kx=.
令g′(x)=0,得x1=0,x2>-1.         (5分)
①當(dāng)k≥時,≤0,g′(x)<0在(0,+∞)上恒成立,因此g(x)在[0,+∞)上單調(diào)遞減,從而對任意的x∈[0,+∞),總有g(shù)(x)≤g(0)=0,故k≥符合題意,6分②當(dāng)0<k<時,>0, 對于x∈,g′(x)>0,
故g(x)在內(nèi)單調(diào)遞增,因此當(dāng)取x0時,g(x0)>g(0)=0,不合.
綜上,. (8分)
(3)證明:當(dāng)n=1時,不等式左邊=2-ln3<2=右邊,所以不等式成立.(9分)
當(dāng)n≥2時,在(2)中取k=,得 (10分)
代入上式得:  (12分)
≤2-ln3+
-ln(2n+1)≤2-ln3+1-<2.
綜上,,        (14分)
考點:本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,數(shù)學(xué)歸納法證明不等式。
點評:難題,本題屬于導(dǎo)數(shù)應(yīng)用中的常見問題,(2)是恒成立問題,注意通過構(gòu)造函數(shù),研究函數(shù)的最值達到解題目的。(3)利用數(shù)學(xué)歸納法。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

)設(shè)為奇函數(shù),為常數(shù).
(1)求的值;
(2)判斷在區(qū)間(1,+∞)內(nèi)的單調(diào)性,并證明你的判斷正確;
(3)若對于區(qū)間 [3,4]上的每一個的值,不等式>恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)有最 大值,求實數(shù)的值
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若函數(shù)無零點,求實數(shù)的取值范圍;
(Ⅱ)若函數(shù)有且僅有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時,求函數(shù)的值域;
(2)若函數(shù)是(-,+)上的減函數(shù),求實數(shù)的高考資源網(wǎng)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,函數(shù)是R上的奇函數(shù),當(dāng),(i)求實數(shù)
的值;(ii)當(dāng)時,求的解析式;
(2)若方程的兩根中,一根屬于區(qū)間,另一根屬于區(qū)間,求實數(shù)的取 值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)。
(1)若處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若,函數(shù),若對于,總存在使得,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),滿足;
(1)若方程有唯一的解;求實數(shù)的值;
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知定義域為的函數(shù)是奇函數(shù)。
(Ⅰ)求的值;
(Ⅱ)解不等式

查看答案和解析>>

同步練習(xí)冊答案