【題目】在平面直角坐標(biāo)系中,曲線(xiàn)(為參數(shù),實(shí)數(shù)),曲線(xiàn)(為參數(shù),實(shí)數(shù)).在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,射線(xiàn),)與交于,兩點(diǎn),與交于,兩點(diǎn),當(dāng)時(shí),;當(dāng)時(shí),.

(1)求,的值;

(2)求的最大值.

【答案】(1);(2)

【解析】

(1)將曲線(xiàn)的參數(shù)方程化為普通方程后,再化為極坐標(biāo)方程,根據(jù)時(shí),;當(dāng)時(shí),,即可分別求出的值;

(2)根據(jù)(1)可知曲線(xiàn)的極坐標(biāo)方程分別為,,代入化簡(jiǎn),再根據(jù)三角函數(shù)的最值的求法即可求出結(jié)果.

(1)由曲線(xiàn)為參數(shù),實(shí)數(shù)),

化為普通方程為,展開(kāi)可得,

所以其極坐標(biāo)方程為,即,

由題意可得當(dāng)時(shí),,所以.

曲線(xiàn)(為參數(shù),實(shí)數(shù)),

化為普通方程為,展開(kāi)可得,

所以其極坐標(biāo)方程為,即,

由題意可得當(dāng)時(shí),,所以.

(2)由(1)可得,的極坐標(biāo)方程分別為,.

所以

因?yàn)?/span>,所以,

所以當(dāng),即時(shí),取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),下列說(shuō)法正確的是( )

(1)的極大值點(diǎn) ;(2)函數(shù)有且只有1個(gè)零點(diǎn);(3)存在正實(shí)數(shù),使得恒成立 ;(4)對(duì)任意兩個(gè)正實(shí)數(shù),且,若,則

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,四點(diǎn)、、中恰有三點(diǎn)在橢圓上.

1)求橢圓的方程;

2)已知點(diǎn)是橢圓的右頂點(diǎn),作一條平行于的直線(xiàn)交橢圓于、兩點(diǎn),記直線(xiàn)和直線(xiàn)的斜率分別為、,試判斷是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱(chēng)為函數(shù)的局部對(duì)稱(chēng)點(diǎn).

1)若a,a≠0,證明:函數(shù)有局部對(duì)稱(chēng)點(diǎn);

2)若函數(shù)在定義域內(nèi)有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)c的取值范圍;

3)若函數(shù)R上有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】氣象意義上,從春季進(jìn)入夏季的標(biāo)志為:“連續(xù)5天的日平均溫度不低于22℃”.現(xiàn)有甲、乙、丙三地連續(xù)5天的日平均溫度的記錄數(shù)據(jù)(記錄數(shù)據(jù)都是正整數(shù)):

①甲地:5個(gè)數(shù)據(jù)的中位數(shù)為24,眾數(shù)為22;

②乙地:5個(gè)數(shù)據(jù)的中位數(shù)為27,總體均值為24;

③丙地:5個(gè)數(shù)據(jù)的中有一個(gè)數(shù)據(jù)是32,總體均值為26,總體方差為10.8;

則肯定進(jìn)入夏季的地區(qū)的有( )

A. ①②③ B. ①③ C. ②③ D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線(xiàn)的焦點(diǎn)為,的準(zhǔn)線(xiàn)與軸的交點(diǎn)為,點(diǎn)上的動(dòng)點(diǎn).當(dāng)是等腰直角三角形時(shí),其面積為2

1)求的方程;

2)延長(zhǎng)AFC于點(diǎn)B,點(diǎn)MC的準(zhǔn)線(xiàn)上的一點(diǎn),設(shè)直線(xiàn),的斜率分別是,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線(xiàn)的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程為.

(1)求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;

(2)若直線(xiàn)與曲線(xiàn),的交點(diǎn)分別為、異于原點(diǎn)),當(dāng)斜率時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù),函數(shù)在區(qū)間上的最大值是2,則______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若對(duì)任意的,都有,則實(shí)數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案