【題目】學(xué)校從參加高一年級(jí)期中考試的學(xué)生中抽出名學(xué)生,并統(tǒng)計(jì)了她們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為分),數(shù)學(xué)成績(jī)分組及各組頻數(shù)如下:

樣本頻率分布表:

分組

頻數(shù)

頻率

合計(jì)

(1)在給出的樣本頻率分布表中,求的值;

(2)估計(jì)成績(jī)?cè)?/span>分以上(含分)學(xué)生的比例;

(3)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定成立“二幫一”小組,即從成績(jī)?cè)?/span>的學(xué)生中選兩位同學(xué),共同幫助成績(jī)?cè)?/span>中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?/span>分,乙同學(xué)的成績(jī)?yōu)?/span>分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

【答案】(1);(2)0.32;(3).

【解析】分析:(1)由樣本頻率分布表,能求出A,B,C,D的值.
(2)由頻率分布表能估計(jì)成績(jī)?cè)?/span>120分以上(含120分)的學(xué)生比例.
(3)成績(jī)?cè)?/span>[60,75)內(nèi)有2人,記為甲、A,成績(jī)?cè)?/span>[135,150]內(nèi)有4人,記為乙,B,C,D,由此利用列舉法能求出甲、乙同學(xué)恰好被安排在同一小組的概率.

詳解:

(1)由樣本頻率分布表,得:

.

(2)估計(jì)成績(jī)?cè)谝陨?/span>分(含分)的學(xué)生比例為:

(3)成績(jī)?cè)?/span>內(nèi)有人,記為甲、

成績(jī)?cè)?/span>內(nèi)有人,記為乙,.

則“二幫一”小組有以下種分鐘辦法:

其中甲、乙兩同學(xué)被分在同一小組有種辦法:甲乙,甲乙,甲乙,

∴甲、乙同學(xué)恰好被安排在同一小組的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓的圓心在軸上,且過(guò)點(diǎn),.

(1)求圓的方程;

(2)直線軸交于點(diǎn),點(diǎn)為直線上位于第一象限內(nèi)的一點(diǎn),以為直徑的圓與圓相交于點(diǎn).若直線的斜率為-2,求點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率e= ,右頂點(diǎn)、上頂點(diǎn)分別為A,B,直線AB被圓O:x2+y2=1截得的弦長(zhǎng)為
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)B且斜率為k的動(dòng)直線l與橢圓C的另一個(gè)交點(diǎn)為M, =λ( ),若點(diǎn)N在圓O上,求正實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)甲乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸;生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸,銷(xiāo)售每噸甲產(chǎn)品可獲得利潤(rùn)5萬(wàn)元,銷(xiāo)售每噸乙產(chǎn)品可獲得利潤(rùn)3萬(wàn)元。該企業(yè)在一個(gè)生產(chǎn)周期消耗A原料不超過(guò)13噸,B原料不超過(guò)18噸。問(wèn)該企業(yè)如何安排可獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為雙曲線 的右焦點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線依次與雙曲線的左、右支交于點(diǎn),若, ,則該雙曲線的離心率為(

A. B. C. D.

【答案】B

【解析】,設(shè)雙曲線的左焦點(diǎn)為,連接,由對(duì)稱性可知, 為矩形,且,故選B.

方法點(diǎn)睛】本題主要考查雙曲線的定義及離心率,屬于難題.離心率的求解在圓錐曲線的考查中是一個(gè)重點(diǎn)也是難點(diǎn),一般求離心率有以下幾種情況:①直接求出,從而求出;②構(gòu)造的齊次式,求出;③采用離心率的定義以及圓錐曲線的定義來(lái)求解;④根據(jù)圓錐曲線的統(tǒng)一定義求解.

型】單選題
結(jié)束】
12

【題目】點(diǎn)到點(diǎn), 及到直線的距離都相,如果這樣的點(diǎn)恰好只有一個(gè),那么實(shí)數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,又知此拋物線上一點(diǎn)到焦點(diǎn)的距離為6.

(1)求此拋物線的方程;

(2)若此拋物線方程與直線相交于不同的兩點(diǎn)、,且中點(diǎn)橫坐標(biāo)為2,求的值.

【答案】(1);(2)2.

【解析】試題分析:

(1)由題意設(shè)拋物線方程為,則準(zhǔn)線方程為,解得,即可求解拋物線的方程;

(2)由消去,根據(jù),解得,得到,即可求解的值.

試題解析:

(1)由題意設(shè)拋物線方程為),其準(zhǔn)線方程為,

到焦點(diǎn)的距離等于到其準(zhǔn)線的距離,∴,∴,

∴此拋物線的方程為

(2)由消去,

∵直線與拋物線相交于不同兩點(diǎn)、,則有

解得,

,解得(舍去).

∴所求的值為2.

型】解答
結(jié)束】
20

【題目】如圖,在四棱錐中,底面是平行四邊形, ,側(cè)面底面 , , 分別為, 的中點(diǎn),點(diǎn)在線段上.

(1)求證: 平面;

(2)如果三棱錐的體積為,求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知向量,又點(diǎn),,.

(1)若,且,求向量;

(2)若向量與向量共線,常數(shù),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面內(nèi)兩點(diǎn)A(4,0),B(0,2)

(1)求過(guò)P(2,3)點(diǎn)且與直線AB平行的直線l的方程;

(2)設(shè)O(0,0),求OAB外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 和點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且與圓相切,圓心的軌跡為曲線

(1)求曲線的方程;

(2)點(diǎn)是曲線軸正半軸的交點(diǎn),點(diǎn), 在曲線上,若直線, 的斜率分別是, ,滿足,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案