(1)求過(guò)點(diǎn)A(1,2)且與原點(diǎn)距離最大的直線方程,
(2)求經(jīng)過(guò)點(diǎn)(1,2)且在兩坐標(biāo)軸上的截距相等的直線的方程.
分析:(1)先根據(jù)垂直關(guān)系求出所求直線的斜率,由點(diǎn)斜式求直線方程,并化為一般式.
(2)當(dāng)直線過(guò)原點(diǎn)時(shí),方程為 y=2x,當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè)直線的方程為:x+y=k,把點(diǎn)(1,2)代入直線的方程可得k值,即得所求的直線方程.
解答:解:(1)由A(1,2),則OA的斜率等于2,故所求直線的斜率等于-
1
2

由點(diǎn)斜式求得所求直線的方程為y-2=-
1
2
(x-1),化簡(jiǎn)可得x+2y-5=0,
(2):當(dāng)直線過(guò)原點(diǎn)時(shí),方程為:y=2x,即 2x-y=0;
當(dāng)直線不過(guò)原點(diǎn)時(shí),設(shè)直線的方程為:x+y=k,
把點(diǎn)(1,2)代入直線的方程可得 k=3,
故直線方程是 x+y-3=0.
綜上可得所求的直線方程為:2x-y=0,或 x+y-3=0.
點(diǎn)評(píng):(1)本題考查用點(diǎn)斜式求直線方程的方法,求出所求直線的斜率,是解題的關(guān)鍵.
(2)本題考查用待定系數(shù)法求直線方程,體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,注意不要漏掉當(dāng)直線過(guò)原點(diǎn)時(shí)的情況,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2-4x-6y+12=0
(1)求過(guò)點(diǎn)A(1,5)的圓C的切線方程;
(2)求在兩坐標(biāo)軸上截距之和為0,且截圓C所得弦長(zhǎng)為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求過(guò)點(diǎn)A(1,-1),B(-1,1),且圓心C在直線x+y-2=0上的圓的標(biāo)準(zhǔn)方程.
(2)一條光線從點(diǎn)A(-2,3)射出,經(jīng)x軸反射后,與圓(x-3)2+(y-2)2=1相切,求反射線經(jīng)過(guò)所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求過(guò)點(diǎn)A(2,0)且與⊙B:(x+2)2+y2=36內(nèi)切的圓的圓心的軌跡方程.
(2)設(shè)點(diǎn)P是(1)題中的軌跡上的動(dòng)點(diǎn),已知定點(diǎn)D(1,1),求|PD|+
32
|PA|的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求過(guò)點(diǎn)A(1,-1),B(-1,1),且圓心在直線x+y-2=0上的圓的方程.
(2)判斷以C(2,-1),D(0,-4)為直徑的圓與圓(x-1)2+(y-1)2=4的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案