設(shè)U=R,M={x|x≥2},N={x|-1≤x<5},求CUM∪(M∩N)的值.
由全集U=R,M={x|x≥2},得到CUM={x|x<2},
由N={x|-1≤x<5},得到M∩N={x|2≤x≤5},
所以CUM∪(M∩N)={x|x<5}
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,M={x|x2-x≤0},函數(shù)f(x)=
1
1-x
的定義域?yàn)镹,則M∩N=( 。
A、[0,1)B、(0,1)
C、[0,1]D、{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、設(shè)U=R,M={x|x≥2},N={x|-1≤x<5},求CUM∪(M∩N)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,M={x|x2-2x>0},則?UM=
[0,2]
[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,M={x|x2-2x-3>0},N={x||x|≤3},則CUM∩N=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,M={x|y=lg(x2-2x)},則?UM=(  )

查看答案和解析>>

同步練習(xí)冊答案