已知函數(shù)f(x)=x|x-a|+2x.若存在a∈[-3,3],使得關(guān)于x的方程f(x)=tf(a)有三個不相等的實數(shù)根,則實數(shù)t的取值范圍是( 。
分析:當(dāng)-2≤a≤2時,f(x)在R上是增函數(shù),則關(guān)于x的方程f(x)=tf(a)不可能有三個不等的實數(shù)根;當(dāng)a∈(2,3]時和當(dāng)a∈[-3,-2)時,等價轉(zhuǎn)化f(x)的表達式,利用函數(shù)的單調(diào)性能得到實數(shù)t的取值范圍.
解答:解:當(dāng)-2≤a≤2時,f(x)在R上是增函數(shù),
則關(guān)于x的方程f(x)=tf(a)不可能有三個不等的實數(shù)根,…(2分)
則當(dāng)a∈(2,3]時,由f(x)=
x2+(2-a)x,x≥a
-x2+(2+a)x,x<a
,
得x≥a時,f(x)=x2+(2-a)x,對稱軸x=
a-2
2
<a,
則f(x)在x∈[a,+∞)為增函數(shù),此時f(x)的值域為[f(a),+∞)=[2a,+∞),
x<a時,f(x)=-x2+(2+a)x,對稱軸x=
a+2
2
<a,
則f(x)在x∈(-∞,
a+2
2
]為增函數(shù),此時f(x)的值域為(-∞,
(a+2)2
4
],
f(x)在x∈[
a+2
2
,a)為減函數(shù),此時f(x)的值域為(2a,
(a+2)2
4
];
由存在a∈(2,3],方程f(x)=tf(a)=2ta有三個不相等的實根,
則2ta∈(2a,
(a+2)2
4
),
即存在a∈(2,3],使得t∈(1,
(a+2)2
8a
)即可,
令g(a)=
(a+2)2
8a
=
1
8
(a+
4
a
+4),
只要使t<(g(a))max即可,而g(a)在a∈(2,3]上是增函數(shù),
∴(g(a))max=g(3)=
25
24

故實數(shù)t的取值范圍為(1,
25
24
);…(15分)
同理可求當(dāng)a∈[-3,-2)時,t的取值范圍為(1,
25
24
);
綜上所述,實數(shù)t的取值范圍為(1,
25
24
).…(17分)
故選B.
點評:本題考查函數(shù)恒成立問題的應(yīng)用,考查運算求解能力,推理論證能力,考查化歸與轉(zhuǎn)化思想.綜合性強,難度大,有一定的探索性,對數(shù)學(xué)思維能力要求較高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案