(1)若函數(shù)f(x)=
2x2-2ax-a-1
的定義域?yàn)镽,則實(shí)數(shù)a的取值范圍______.
(2)函數(shù)f(x)=log
1
2
|x2-6x+5|
的單調(diào)遞增區(qū)間為______.
(1)∵函數(shù)f(x)=
2x2-2ax-a-1
的定義域?yàn)镽
2x2-2ax-a-1≥0恒成立
2x2-2ax-a20恒成立
∴x2-2ax-a≥0恒成立
∴4a2+4a≤0
∴-1≤a≤0
∴實(shí)數(shù)a的取值范圍是[-1,0].
(2)由|x2-6x+5|>0,解得:x≠1或x≠5,
設(shè)u=|x2-6x+5|=|(x-3)2-4|,則函數(shù)在(-∞,1),[3,5)上是單調(diào)遞減,
而要求的函數(shù)是以
1
2
為底的,根據(jù)“同增異減”,
那么函數(shù)f(x)=log
1
2
|x2-6x+5|
的單調(diào)遞增區(qū)間為(-∞,1),[3,5)
故答案為:(1)[-1,0];
(2)(-∞,1),[3,5)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)的定義域?yàn)镈,若存在x0∈D,使f(x0)=x0成立,則稱以(x0,x0)為坐標(biāo)的點(diǎn)為函數(shù)f(x)圖象上的不動(dòng)點(diǎn).
(1)若函數(shù)f(x)=
3x+a
x+b
圖象上有兩個(gè)關(guān)于原點(diǎn)對(duì)稱的不動(dòng)點(diǎn),求實(shí)數(shù)a,b應(yīng)滿足的條件;
(2)設(shè)點(diǎn)P(x,y)到直線y=x的距離d=
|x-y|
2
.在(1)的條件下,若a=8,記函數(shù)f(x)圖象上的兩個(gè)不動(dòng)點(diǎn)分別為A1,A2,P為函數(shù)f(x)圖象上的另一點(diǎn),其縱坐標(biāo)yP>3,求點(diǎn)P到直線A1A2距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).
(3)下述命題“若定義在R上的奇函數(shù)f(x)圖象上存在有限個(gè)不動(dòng)點(diǎn),則不動(dòng)點(diǎn)有奇數(shù)個(gè)”是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)舉一反例.若地方不夠,可答在試卷的反面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

min{p,q}=
p,p≤q
q.p>q

(1)若函數(shù)f(x)=min{
x
2
3
(x-1)}
,求f(x)表達(dá)式
(2)求f(x)=min{3|x-p1|,2×3|x-p2|)}=3|x-p1|,對(duì)所有實(shí)數(shù)x成立的充分必要條件(用p1,p2表示);
(3)若f(x)=min{3|x-p1|,2×3|x-p2|)},且f(a)=f(b)(a,bp1,p2為實(shí)數(shù),且a<bp1,p2∈(a,b))求f(x)在區(qū)間[a,b]上的單調(diào)增區(qū)間的長(zhǎng)度和(閉區(qū)間[m,n]的長(zhǎng)度定義為n-m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)定義域分別為Df、Dg的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=
f(x)•g(x)(x∈Df且x∈Dg)
f(x)(x∈Df且x∉Dg)
g(x)(x∉Df且x∈Dg).

(1)若函數(shù)f(x)=
1
x-1
,g(x)=x2,寫出函數(shù)h(x)的解析式;
(2)求(1)問(wèn)中函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b為正實(shí)數(shù).
(1)若函數(shù)f(x)=
lnxx
,求f(x)的單調(diào)區(qū)間
(2)若e<a<b(e為自然對(duì)數(shù)的底),求證:ab>ba;(3)求滿足ab=ba(a≠b)的所有正整數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•湖北模擬)已知a>0,a≠1,若函數(shù)f(x)=
4
4-x2
-
1
2+x
(x>-2)
loga(-x)(x≤-2)
在點(diǎn)x=-2處連續(xù),則a=
16
16

查看答案和解析>>

同步練習(xí)冊(cè)答案