在平面幾何里,有:“若的三邊長分別為內(nèi)切圓半徑為,則三角形面積為”,拓展到空間,類比上述結(jié)論,“若四面體的四個面的面積分別為內(nèi)切球的半徑為,則四面體的體積為

                                         

 

【答案】

【解析】

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

15、在平面幾何里,有勾股定理“設(shè)△ABC的兩邊AB,AC互相垂直,則AB2+AC2=BC2”,拓展到空間,類比平面幾何的勾股定理,研究三棱錐的側(cè)面面積與底面面積間的關(guān)系,可以得出正確的結(jié)論是:“設(shè)三棱錐A-BCD的三個側(cè)面ABC、ACD、ADB兩兩互相垂直,則
S△ABC2+S△ACD2+S△ADB2=S△BCD2
.”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、在平面幾何里,有勾股定理:“設(shè)△ABC的兩邊AB,AC互相垂直,則|AB|2+|AC|2=|BC|2”拓展到空間,類比平面幾何的勾股定理,“設(shè)三棱錐A-BCD的三個側(cè)面ABC、ACD、ADB 兩兩相互垂直,則可得”(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面幾何里,有:“若△ABC的三邊長分別為a,b,c內(nèi)切圓半徑為r,則三角形面積為S△ABC=
12
(a+b+c)r”,拓展到空間,類比上述結(jié)論,“若四面體A-ACD的四個面的面積分別為S1,S2,S3,S4內(nèi)切球的半徑為r,則四面體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江寧波四校高二下學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

在平面幾何里,有勾股定理:“設(shè)的兩邊互相垂直,則”拓展到空間,類比平面幾何的勾股定理,“設(shè)三棱錐的三個側(cè)面、兩兩互相垂直”,則可得 (     )

  A、

B、

C、

D、

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省舟山市2010屆高三高考模擬試題 題型:填空題

在平面幾何里,有:“若的三邊長分別為內(nèi)切圓半徑為,則三角形面積為”,拓展到空間,類比上述結(jié)論,“若四面體的四個面的面積分別為內(nèi)切球的半徑為,則四面體的體積為       

 

 

查看答案和解析>>

同步練習(xí)冊答案