分析 根據(jù)函數(shù)f(x)的解析式,列出使解析式有意義的不等式組,求出解集即可.
解答 解:要使函數(shù)f(x)=$\frac{{x}^{2}}{\sqrt{1-x}}$+lg(2x+1)有意義,
應滿足$\left\{\begin{array}{l}{1-x>0}\\{2x+1>0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x<1}\\{x>-\frac{1}{2}}\end{array}\right.$,
即-$\frac{1}{2}$<x<1;
所以函數(shù)f(x)的定義域為(-$\frac{1}{2}$,1).
故答案為:(-$\frac{1}{2}$,1).
點評 本題考查了根據(jù)函數(shù)的解析式求定義域的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:解答題
X | 6 | 8 | 10 | 12 |
Y | 2 | 3 | 5 | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AD}$ | B. | $\frac{2}{3}\overrightarrow{AB}-\frac{1}{3}\overrightarrow{AD}$ | C. | $-\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}$ | D. | $-\frac{2}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AD}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com