((本小題滿分12分)
如圖所示,在棱長為的正方體ABCD—A1B1C1D1中,E、F、H分別是棱BB1、CC1、DD1的中點。


 
(Ⅰ)求證:BH//平面A1EFD1;

(Ⅱ)求直線AF與平面A1EFD1所成的角的正弦值。

(1)略
(2)
(Ⅰ)證明:連結(jié)D1E,


 

  ………………6分
(Ⅱ)解:過A作AG⊥A1E,垂足為G。
∵A1D1⊥平面A1ABB1,∴A1D1⊥AG,
∴AG⊥平面A1EFD1。
連結(jié)FG,則∠AFG為所求的角。……9分

 

 

      即直線AF與平面A1EFD1所成的角的正弦值為 …………12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面, .底面為梯形,
.,點在棱上,且
(1)求證:平面;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

本小題滿分12分)
如圖,在六面體中,四邊形ABCD是邊長為2的正方形,四邊形是邊長為1的正方形,平面,平面ABCD,DD1=2。

(1)求證:與AC共面,與BD共面.   
(2)求證:平面
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
如圖,在正方體ABCD—A1B1C1D1中,M、N、G
分別是A1A,D1C,AD的中點.求證:(Ⅰ)MN//平面ABCD;(Ⅱ)MN⊥平面B1BG.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點。
(1)求證:B1C1⊥平面ABB1A1;
(2)在CC1上是否存在一點E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
等邊和梯形所在的平面相互垂直,,,,為棱的中點,∥平面.

(I)求證:平面平面;
(II)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12)如圖,四棱錐的底面為正方形,
平面,,,分別為,
的中點.   (1)求證平面.(2)求異面直線所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知四棱錐的底面是邊長為2的菱形,且
(Ⅰ)若O是AC與BD的交點,求證:平面;
(Ⅱ)若點的中點,求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若圓錐的表面積為平方米,且它的側(cè)面展開圖是一個半圓,則這個圓錐的底面的直徑為           

查看答案和解析>>

同步練習冊答案