已知拋物線y22px(p0)與雙曲線1(a0,b0)的一條漸近線交于一點(diǎn)M(1m),點(diǎn)M到拋物線焦點(diǎn)的距離為3,則雙曲線的離心率等于(  )

A3 B4 C. D.

 

A

【解析】點(diǎn)M到拋物線焦點(diǎn)的距離為13,p4,

拋物線方程為y28x,m28.雙曲線的漸近線方程y±x,兩邊平方得y2x2,把(1m)代入上式得8,即b28a2.

雙曲線的離心率e3.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷2練習(xí)卷(解析版) 題型:填空題

如圖是一個(gè)空間幾何體的三視圖,其中正視圖和側(cè)視圖都是半徑為2的半圓,俯視圖是半徑為2的圓,則該幾何體的體積等于________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷6練習(xí)卷(解析版) 題型:填空題

右面莖葉圖表示的是甲、乙兩人在5次綜合測(cè)評(píng)中的成績(jī),其中一個(gè)數(shù)字被污損,則甲的平均成績(jī)超過(guò)乙的平均成績(jī)的概率為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷5練習(xí)卷(解析版) 題型:解答題

已知橢圓C的中心在原點(diǎn),一個(gè)焦點(diǎn)為F(0,),且長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的比是1.

(1)求橢圓C的方程;

(2)若橢圓C上在第一象限的一點(diǎn)P的橫坐標(biāo)為1,過(guò)點(diǎn)P作傾斜角互補(bǔ)的兩條不同的直線PA,PB分別交橢圓C于另外兩點(diǎn)AB,求證:直線AB的斜率為定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷5練習(xí)卷(解析版) 題型:填空題

已知直線l1axy2a10l22x(a1)y20(aR),則l1l2的充要條件是a________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷5練習(xí)卷(解析版) 題型:選擇題

已知點(diǎn)P(3,2)與點(diǎn)Q(1,4)關(guān)于直線l對(duì)稱,則直線l的方程為(  )

Axy10 Bxy0

Cxy10 Dxy0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷4練習(xí)卷(解析版) 題型:填空題

已知三棱錐PABC的各頂點(diǎn)均在一個(gè)半徑為R的球面上,球心OAB上,PO平面ABC,,則三棱錐與球的體積之比為________

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷3練習(xí)卷(解析版) 題型:解答題

已知在遞增等差數(shù)列{an}中,a12,a1a3,a7成等比數(shù)列,{bn}的前n項(xiàng)和為Sn,且Sn2n12.

(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;

(2)設(shè)cnabn,求數(shù)列{cn}的前n項(xiàng)和Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評(píng)估模擬卷1練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)ln x1.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)設(shè)mR,對(duì)任意的a(1,1),總存在x0[1e],使得不等式maf(x0)0成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案