設(shè)F1,F(xiàn)2是橢圓數(shù)學(xué)公式的兩個(gè)焦點(diǎn),點(diǎn)P是該橢圓上的動(dòng)點(diǎn),若∠F1PF2的最大值為數(shù)學(xué)公式
(1)求該橢圓的方程; 
(2)求以該橢圓的長(zhǎng)軸AB為一底,另一底CD的兩端點(diǎn)也在橢圓上的梯形ABCD的最大面積.

解:(1)由于∠F1PF2的最大值為,則P 的坐標(biāo)為(0,±1),即c=1
∵b=1,∴
∴橢圓的方程為:
(2)由于A(yíng)B∥CD,所以C,D關(guān)于y軸對(duì)稱(chēng),設(shè)
則梯形的面積,
記f(θ)=(cosθ+1)sinθ,則f'(θ)=cos2θ-sin2θ+cosθ=2cos2θ+cosθ-1=0得,即
當(dāng)時(shí),f'(θ)>0,f(θ)在單調(diào)遞增;
當(dāng)時(shí),f'(θ)<0,f(θ)在單調(diào)遞增;
所以,故
分析:(1)根據(jù)∠F1PF2的最大值為,可得c=1,又b=1,所以,從而可得橢圓的方程;
(2)設(shè),則梯形的面積,構(gòu)建函數(shù)f(θ)=(cosθ+1)sinθ,確定函數(shù)的單調(diào)性,從而可得函數(shù)的最值,即可求得梯形ABCD的最大面積.
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查求函數(shù)的最值,解題的關(guān)鍵是正確設(shè)點(diǎn),利用三角函數(shù)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),F(xiàn)1F2=8,P是橢圓上的點(diǎn),PF1+PF2=10,且PF1⊥PF2,則點(diǎn)P的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1F2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且P到兩個(gè)焦點(diǎn)的距離之差為2,則△PF1F2是( 。

A.鈍角三角形                                   B.銳角三角形

C.斜三角形                                D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題20分,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題6分,第4小題4分)

         我們知道,判斷直線(xiàn)與圓的位置關(guān)系可以用圓心到直線(xiàn)的距離進(jìn)行判別,那么直線(xiàn)與橢圓的位置關(guān)系有類(lèi)似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題。

   (1)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)的距離分別為d1、d2,試求d1·d2的值,并判斷直線(xiàn)L與橢圓M的位置關(guān)系。

   (2)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)        mn不同時(shí)為0)的距離分別為d1、d2,且直線(xiàn)L與橢圓M相切,試求d1·d2的值。

   (3)試寫(xiě)出一個(gè)能判斷直線(xiàn)與橢圓的位置關(guān)系的充要條件,并證明。

   (4)將(3)中得出的結(jié)論類(lèi)比到其它曲線(xiàn),請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),以F1為圓心,且過(guò)橢圓中心的圓與橢圓的一個(gè)交點(diǎn)為M,若直線(xiàn)F2M與圓F1相切,則該橢圓的離心率是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年貴州省第13次月考) 題型:選擇題

設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且,

 

的面積為(   )

A.4                           B.6                          C.                     D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案