如圖,已知圓外有一點(diǎn),作圓的切線,為切點(diǎn),過的中點(diǎn),作割線,交圓于、兩點(diǎn),連接并延長(zhǎng),交圓于點(diǎn),連續(xù)交圓于點(diǎn),若.
(1)求證:△∽△;
(2)求證:四邊形是平行四邊形.
(1)由切割線定理,及N是PM的中點(diǎn),可得PN2=NA•NB,結(jié)合∠PNA=∠BNP,可得△PNA∽△BNP,則∠APN=∠PBN,即∠APM=∠PBA;再由MC=BC,可得∠MAC=∠BAC,再由等角的補(bǔ)角相等可得∠MAP=∠PAB,進(jìn)而得到△APM∽△ABP
(2)由∠ACD=∠PBN,可得∠PCD=∠CPM,即PM∥CD;由△APM∽△ABP,PM是圓O的切線,可證得∠MCP=∠DPC,即MC∥PD;再由平行四邊形的判定定理得到四邊形PMCD是平行四邊形.
解析試題分析:證明:(Ⅰ)∵是圓的切線,是圓的割線,是的中點(diǎn),證明:(Ⅰ)∵PM是圓O的切線,NAB是圓O的割線,N是PM的中點(diǎn),∴MN2=PN2=NA•NB,又∵∠PNA=∠BNP,
∴△PNA∽△BNP,∴∠APN=∠PBN,即∠APM=∠PBA,.∵M(jìn)C=BC,
∴∠MAC=∠BAC,∴∠MAP=∠PAB,∴△APM∽△ABP…(5分)
(Ⅱ)∵∠ACD=∠PBN,
∴∠ACD=∠PBN=∠APN,即∠PCD=∠CPM,
∴PM∥CD.∵△APM∽△ABP,∴∠PMA=∠BPA∵PM是圓O的切線,∴∠PMA=∠MCP,∴∠PMA=∠BPA=∠MCP,即∠MCP=∠DPC,∴MC∥PD,∴四邊形PMCD是平行四邊形.…(10分)
考點(diǎn):切割線定理,圓周角定理
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是切割線定理,圓周角定理,三角形相似的判定與性質(zhì),平行四邊形的判定,熟練掌握平面幾何的基本定理是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知圓⊙O1與圓⊙O2外切于點(diǎn)P,過點(diǎn)P的直線交圓⊙O1于A,交圓⊙O2于B,AC為圓⊙O1直徑,BD與⊙O2相切于B,交AC延長(zhǎng)線于D.
(Ⅰ)求證:
(Ⅱ)若BC、PD相交于點(diǎn)M,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線交圓于兩點(diǎn),是直徑,平分,交圓于點(diǎn), 過作丄于.
(1)求證:是圓的切線;
(2)若,求的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,CD為△ABC外接圓的切線,AB的延長(zhǎng)線交直線CD于點(diǎn)D, E,F(xiàn)分別為弦AB與弦AC上的點(diǎn),且BC·AE=DC·AF,B, E, F,C四點(diǎn)共圓。
證明:(Ⅰ)CA是△ABC外接圓的直徑;
(Ⅱ)若DB=BE=EA.求過B, E, F,C四點(diǎn)的圓的面積與△ABC外接圓面積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在Rt△ABC中,, BE平分∠ABC交AC于點(diǎn)E, 點(diǎn)D在AB上,.
(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若,求EC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖, ⊙O為的外接圓,直線為⊙O的切線,切點(diǎn)為,直線∥,交于,交⊙O于,為上一點(diǎn),且.
求證:(Ⅰ);
(Ⅱ)點(diǎn)、、、共圓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線過圓心,交⊙于,直線交⊙于(不與重合),直線與⊙相切于,交于,且與垂直,垂足為,連結(jié).
求證:(1);
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題10分)已知C點(diǎn)在⊙O直徑BE的延長(zhǎng)線上,CA切⊙O于A 點(diǎn),CD是∠ACB的平分線且交AE于點(diǎn)F,交AB于點(diǎn)D.
(1)求∠ADF的度數(shù);
(2)若AB=AC,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,四邊形ABCD為矩形,點(diǎn)M是BC的中點(diǎn),CN=CA,用向量法證明:
(1)D、N、M三點(diǎn)共線;(2)若四邊形ABCD為正方形,則DN=BN. K^S*5U.C ^S*5U.C
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com