【題目】(本小題滿(mǎn)分12分)某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷(xiāo)售量y(單位:t)和年利潤(rùn)z(單位:千元)的影響,對(duì)近8年的宣傳費(fèi)和年銷(xiāo)售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中=,=
(Ⅰ)根據(jù)散點(diǎn)圖判斷,與
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(III)已知這種產(chǎn)品的年利潤(rùn)z與x,y的關(guān)系為,根據(jù)(Ⅱ)的結(jié)果回答下列問(wèn)題:
(Ⅰ)當(dāng)年宣傳費(fèi)時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值時(shí)多少?
(Ⅱ)當(dāng)年宣傳費(fèi)為何值時(shí),年利潤(rùn)的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù),,……,,其回歸線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:
,
【答案】(Ⅰ)適合作為年銷(xiāo)售關(guān)于年宣傳費(fèi)用的回歸方程類(lèi)型;(Ⅱ);(Ⅲ)46.24
【解析】
(Ⅰ)根據(jù)散點(diǎn)圖,即可判斷出結(jié)論,建立線(xiàn)性回歸方程,求出d、c的值;
(Ⅱ)先建立中間量w=,建立y關(guān)于w的線(xiàn)性回歸方程,根據(jù)公式求出w,問(wèn)題得以解決;
(Ⅲ) (。由(Ⅱ)知可計(jì)算出年銷(xiāo)售量y的預(yù)報(bào)值與年利潤(rùn)z的預(yù)報(bào)值;
(ⅱ)根據(jù)(Ⅱ)的結(jié)果知,可得年利潤(rùn)z的函數(shù),求出年利潤(rùn)的最大值.
解:(Ⅰ)由散點(diǎn)圖可以判斷,y=c+d適宜作為年銷(xiāo)售量y關(guān)于年宣傳費(fèi)x的回歸方程類(lèi)型.
(Ⅱ)令w=,先建立y關(guān)于w的線(xiàn)性回歸方程.由于
所以y關(guān)于w的線(xiàn)性回歸方程為=100.6+68w,
因此y關(guān)于x的回歸方程為=100.6+68.
(Ⅲ) (。由(Ⅱ)知,當(dāng)x=49時(shí),年銷(xiāo)售量y的預(yù)報(bào)值
=100.6+68=576.6,
年利潤(rùn)z的預(yù)報(bào)值=576.6×0.2-49=66.32.
(ⅱ)根據(jù)(Ⅱ)的結(jié)果知,年利潤(rùn)z的預(yù)報(bào)值
=0.2(100.6+68)-x=-x+13.6+20.12,
∴當(dāng)=即x=46.24時(shí)取最大值.
故宣傳費(fèi)用為46.24千元時(shí),年利潤(rùn)的預(yù)報(bào)值最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sin 2x+cos 2x圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將圖象上所有點(diǎn)向右平移個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則g(x)圖象的一條對(duì)稱(chēng)軸方程是( )
A. x=- B. x=
C. x= D. x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD的中點(diǎn),G是EF的中點(diǎn),現(xiàn)在沿AE、AF及EF把這個(gè)正方形折成一個(gè)空間圖形,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為H,那么,在這個(gè)空間圖形中必有( )
A. 所在平面B. 所在平面
C. 所在平面D. 所在平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩名運(yùn)動(dòng)員互不影響地進(jìn)行四次設(shè)計(jì)訓(xùn)練,根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì),他們?cè)O(shè)計(jì)成績(jī)均不低于8環(huán)(成績(jī)環(huán)數(shù)以整數(shù)計(jì)),且甲乙射擊成績(jī)(環(huán)數(shù))的分布列如下:
(I)求, 的值;
(II)若甲乙兩射手各射擊兩次,求四次射擊中恰有三次命中9環(huán)的概率;
(III)若兩個(gè)射手各射擊1次,記兩人所得環(huán)數(shù)的差的絕對(duì)值為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某藝術(shù)品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側(cè)面用于藝術(shù)裝飾,如圖1.為了便于設(shè)計(jì),可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線(xiàn)旋轉(zhuǎn)180°而成,如圖2.已知圓的半徑為,設(shè),圓錐的側(cè)面積為.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)為了達(dá)到最佳觀賞效果,要求圓錐的側(cè)面積最大.求取得最大值時(shí)腰的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,是正方形,平面,平面,,點(diǎn)M為棱的中點(diǎn).
(1)求證:;
(2)求證:平面平面;
(3)若,,求E點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P–ABCD中,底面ABCD是邊長(zhǎng)為6的正方形,PD平面ABCD,PD=8.
(1) 求PB與平面ABCD所成角的大;
(2) 求異面直線(xiàn)PB與DC所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某物流公司欲將一批海產(chǎn)品從A地運(yùn)往B地,現(xiàn)有汽車(chē)、火車(chē)、飛機(jī)三種運(yùn)輸工具可供選擇,這三種工具的主要參考數(shù)據(jù)如下:
運(yùn)輸工具 | 途中速度() | 途中費(fèi)用(元/) | 裝卸時(shí)間() | 裝卸費(fèi)用(元/) |
汽車(chē) | 50 | 80 | 2 | 200 |
火車(chē) | 100 | 40 | 3 | 400 |
飛機(jī) | 200 | 200 | 3 | 800 |
若這批海產(chǎn)品在運(yùn)輸過(guò)程中的損耗為300元/,問(wèn)采用哪種運(yùn)輸方式比較好,即運(yùn)輸過(guò)程中的費(fèi)用與損耗之和最小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com