已知不等式組,恒有(a+b,a-b)在不等式組對(duì)應(yīng)的區(qū)域內(nèi),則以a,b為坐標(biāo)的點(diǎn)P (a,b)所形成的平面區(qū)域的面積是( )
A.
B.
C.
D.
【答案】分析:據(jù)已知求出點(diǎn)P (a,b)的橫坐標(biāo)、縱坐標(biāo)滿足的約束條件,畫(huà)出可行域,求出圖象的面積即得.
解答:解:(a+b,a-b)在不等式組對(duì)應(yīng)的區(qū)域內(nèi),
可得 ,
滿足約束條件的可行域如圖所示:
即可得直角三角形OAB,知面積為S=
故選D.
點(diǎn)評(píng):求出點(diǎn)滿足的約束條件,畫(huà)出不等式組表示的平面區(qū)域,求出圖象的面積,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不等式組
x≥0
y≥0
x+y≤1
,恒有(a+b,a-b)在不等式組對(duì)應(yīng)的區(qū)域內(nèi),則以a,b為坐標(biāo)的點(diǎn)P (a,b)所形成的平面區(qū)域的面積是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x),g(x),h(x),如果存在實(shí)數(shù)a,b,使得h(x)=af(x)+bg(x),那么稱(chēng)h(x)為f(x),g(x)的線性生成函數(shù).
(1)給出如下兩組函數(shù),試判斷h(x)是否分別為f(x),g(x)的線性生成函數(shù),并說(shuō)明理由.
第一組:f(x)=sinx,g(x)=cosx,h(x)=sin(x+
π
3
)

第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數(shù)為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;
(3)已知f(x)=x,g(x)=
1
x
,x∈[1,10]
的線性生成函數(shù)h(x),其中a>0,b>0.若h(x)≥b對(duì)a∈[1,2]恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省蘇州中學(xué)高三(上)調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)于函數(shù)f(x),g(x),h(x),如果存在實(shí)數(shù)a,b,使得h(x)=af(x)+bg(x),那么稱(chēng)h(x)為f(x),g(x)的線性生成函數(shù).
(1)給出如下兩組函數(shù),試判斷h(x)是否分別為f(x),g(x)的線性生成函數(shù),并說(shuō)明理由.
第一組:;
第二組:f(x)=x2-x,g(x)=x2+x+1,h(x)=x2-x+1.
(2)已知f(x)=log2x,g(x)=log0.5x的線性生成函數(shù)為h(x),其中a=2,b=1.若不等式3h2(x)+2h(x)+t<0在x∈[2,4]上有解,求實(shí)數(shù)t的取值范圍;
(3)已知的線性生成函數(shù)h(x),其中a>0,b>0.若h(x)≥b對(duì)a∈[1,2]恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

已知不等式組數(shù)學(xué)公式,恒有(a+b,a-b)在不等式組對(duì)應(yīng)的區(qū)域內(nèi),則以a,b為坐標(biāo)的點(diǎn)P (a,b)所形成的平面區(qū)域的面積是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案