【題目】在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別是棱A1B1 , B1C1的中點,O是AC與BD的交點,面OEF與面BCC1B1相交于m,面OD1E與面BCC1B1相交于n,則直線m,n的夾角為( )
A.0
B.
C.
D.
【答案】A
【解析】解:如圖所示:
∵E,F(xiàn)分別是棱A1B1 , B1C1的中點,
故EF∥AC,
則面OEF即平面EFCA與面BCC1B1相交于CF,即直線m,
由CF∥OE,可得CF∥平面OD1E,
故面OD1E與面BCC1B1相交于n時,
必有n∥CF,即n∥m,
即直線m,n的夾角為0,
故選:A
【考點精析】根據(jù)題目的已知條件,利用異面直線及其所成的角和空間中直線與直線之間的位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD外接于圓,AC是圓周角∠BAD的角平分線,過點C的切線與AD延長線交于點E,AC交BD于點F.
(1)求證:BD∥CE;
(2)若AB是圓的直徑,AB=4,DE=1,求AD的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),若,則稱為的“不動點”,若,則稱為的“穩(wěn)定點”,函數(shù)的“不動點”和“穩(wěn)定點”的集合分別記為和,即,,那么,
(1)求函數(shù)的“穩(wěn)定點”;
(2)求證:;
(3)若,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2 sinθ.
(1)求圓C的直角做標(biāo)方程;
(2)圓C的圓心為C,點P為直線l上的動點,求|PC|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的周期為4的奇函數(shù),當(dāng)0<x<2時,f(x)=4x , 則f(﹣ )+f(2)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備將閑置的一直角三角形地塊開發(fā)成公共綠地,圖中.設(shè)計時要求綠地部分(如圖中陰影部分所示)有公共綠地走道,且兩邊是兩個關(guān)于走道對稱的三角形(和).現(xiàn)考慮方便和綠地最大化原則,要求點與點均不重合,落在邊上且不與端點重合,設(shè).
(1)若,求此時公共綠地的面積;
(2)為方便小區(qū)居民的行走,設(shè)計時要求的長度最短,求此時綠地公共走道的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且c= asinC﹣ccosA
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若關(guān)于的方程有5個不同的實數(shù)解,則實數(shù)的取值范圍是 ( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com