解答題

已知橢圓=1(a>b>0)上有兩點A、B,直線y=x+m上有兩點C、D,且ABCD是正方形,正方形的外接圓的方程為x2+y2-2y-8=0,求橢圓和直線的方程.

答案:
解析:

  如圖,圓方程可化為x2(y1)29,

  ∴圓心(01),半徑r3,∴正方形邊長為3

  設(shè)直線AB方程為yxy,則

  有,

  ∴或()

  ∴m4,直線AB方程為yx2

  

  ∴A(0,-2),B(31)

  ∴∴橢圓方程為1


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:成功之路·突破重點線·數(shù)學(xué)(學(xué)生用書) 題型:044

已知橢圓=1上一點P,到其左、右兩焦點距離之比為1∶3,求點P到兩準(zhǔn)線的距離及點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊 題型:044

解答題

已知橢圓=1的焦點為F1和F2,拋物線與橢圓在第一象限內(nèi)的交點為Q,且∠F1QF2,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:走向清華北大同步導(dǎo)讀·高二數(shù)學(xué)(上) 題型:044

已知橢圓的兩焦點(0,-1)和(0,1),直線y=4是該橢圓的一條準(zhǔn)線.

(1)求橢圓的方程;

(2)已知橢圓上一點P滿足=1,求tan∠P

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊 題型:044

解答題

已知橢圓=1的焦點為F1、F2,能否在x軸下方的橢圓弧上找到一點M,使M到下準(zhǔn)線的距離|MN|等于點M到焦點F1、F2的距離的比例中項?若存在,求出M點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案