函數(shù)fx)=x4-4x3+10x2,則方程fx)=0在區(qū)間[1,2]上的根有 ___。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
對函數(shù)Φx),定義fkx)=Φxmk)+nk(其中x∈(mk,
mmk],kZ,m>0,n>0,且m、n為常數(shù))為Φx)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當Φx)=2x時  ①求f0x)和fkx的解析式;  ②求證:Φx)的各階階梯函數(shù)圖象的最高點共線;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知△ABC是邊長為2的正三角形,如圖,P,Q依次是AB,AC邊上的點,且線段PQ將△ABC分成面積相等的兩部分,設(shè)AP=x,AQ=t,PQ=y,求:

(1)t關(guān)于x的函數(shù)關(guān)系式;
(2)y關(guān)于x的函數(shù)關(guān)系式;
(3)y的最小值和最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
要設(shè)計一張矩形廣告牌,該廣告牌含有大小相等的左右兩個矩形欄目(即圖中陰影部分),這兩欄的面積之和為24500cm2四周空白的寬度為10cm,兩欄之間的中縫空白的寬度為5cm,怎樣確定廣告牌的高與寬的尺寸(單位:cm),能使矩形廣告牌面積最。坎⑶蟪鲎钚∶娣e。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(16分)已知工廠生產(chǎn)某種產(chǎn)品,次品率p與日產(chǎn)量x(萬件)間的關(guān)系為
,每生產(chǎn)1件合格產(chǎn)品盈利3元,每出現(xiàn)1件次品虧損1.5元. (I)將日盈利額y(萬元)表示為日產(chǎn)量(萬件)的函數(shù);(Ⅱ)為使日盈利額最大,日產(chǎn)量應(yīng)為多少萬件?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)函數(shù),其中,若存在實數(shù),使得成立,則稱的不動點.
(1)當時,求的不動點;
(2)若對于任何實數(shù),函數(shù)恒有兩個相異的不動點,求實數(shù)的取值范圍;
(3)在(2)的條件下,若函數(shù)的圖像上兩點的橫坐標是函數(shù)的不動點,且直線是線段的垂直平分線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)f(x)=ex-2x-aR上有兩個零點,則實數(shù)a的取值范圍是_________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某產(chǎn)品按質(zhì)最分成6種不同檔次。假設(shè)工時不變,每天可生產(chǎn)最低檔次40件。若每提高一個檔次,每件利潤增加1元,但是每天要少生產(chǎn)2件產(chǎn)品。
(1)若最低檔次產(chǎn)品利潤每件為16元時,問生產(chǎn)哪種檔次產(chǎn)品每天所獲利潤最大?
(2)由于原材料價格的浮動,生產(chǎn)最低檔次產(chǎn)品每什利潤a [8,24]元,那么生產(chǎn)哪種檔次產(chǎn)品利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)y=x+cosx的大致圖象是     
 
A                 B                C                 D

查看答案和解析>>

同步練習冊答案