已知函數(shù)數(shù)學(xué)公式,則函數(shù)f(x)的圖象在數(shù)學(xué)公式處的切線方程是________.

27x+27y+4=0
分析:首先求出f(x)的導(dǎo)數(shù),然后求出f'()=-1,進(jìn)而求出f(x)和f()=-,即可求出切線方程.
解答:f'(x)=3x2+2f'()x-1則f'()=3×(2+2×f'()×-1
∴f'()=-1
∴f(x)=x3-x2-x
則f()=-
∴函數(shù)f(x)的圖象在處的切線方程是y+=-(x-
即27x+27y+4=0
故答案為27x+27y+4=0.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)與切線方程,此題求出f'()=-1,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),當(dāng)x<0時(shí),f(x)=x2+2x-1
(1)若f(x)為R上的奇函數(shù),則函數(shù)在R上的解析式為?
(2)若f(x)為R上的偶函數(shù),則函數(shù)在R上的解析式為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的,有如下x,f(x)對(duì)應(yīng)值表:
x -2 -1 0
f(x) -10 3 2
則函數(shù)f(x)在區(qū)間
(-2,-1)
(-2,-1)
有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-2mx+n|,x∈R,下列結(jié)論:
①函數(shù)f(x)是偶函數(shù);
②若f(0)=f(2)時(shí),則函數(shù)f(x)的圖象必關(guān)于直線x=1對(duì)稱;
③若m2-n≤0,則函數(shù)f(x)在區(qū)間(-∞,m]上是減函數(shù);
④函數(shù)f(x)有最小值|n-m2|.其中正確的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-bx2的圖象過點(diǎn)P(-1,2),且在點(diǎn)P處的切線恰與直線x-3y=0垂直.則函數(shù)f(x)的解析式為
f(x)=x3+3x2
f(x)=x3+3x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)數(shù)學(xué)公式,則函數(shù)f(x)的表達(dá)式為


  1. A.
    f(x)=x2+2x+1(x≥0)
  2. B.
    f(x)=x2+2x+1(x≥-1)
  3. C.
    f(x)=-x2-2x-1(x≥0)
  4. D.
    f(x)=-x2-2x-1(x≥-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案