分析 根據(jù)題意,把不等式變形為x6+x2>(x+2)3+(x+2),利用函數(shù)f(x)=x3+x的單調性把該不等式轉化為一元二次不等式,從而求出解集.
解答 解:不等式x6-(x+2)>(x+2)3-x2變形為,
x6+x2>(x+2)3+(x+2);
令u=x2,v=x+2,
則x6+x2>(x+2)3+(x+2)?u3+u>v3+v;
考察函數(shù)f(x)=x3+x,知f(x)在R上為增函數(shù),
∴f(u)>f(v),
∴u>v;
不等式x6+x2>(x+2)3+(x+2)可化為
x2>x+2,解得x<-1或x>2;
∴不等式的解集為:(-∞,-1)∪(2,+∞).
故答案為:(-∞,-1)∪(2,+∞).
點評 本題考查了合情推理的應用問題,解題時應把復雜的高次不等式轉化為一元二次不等式,構造函數(shù)并利用函數(shù)的單調性進行轉化是關鍵,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=$\frac{{{x^2}-1}}{x-1}$,g(x)=x+1 | B. | f(x)=x,g(x)=$\root{3}{x^3}$ | ||
C. | f(x)=$\sqrt{(x+1)(x+2)}$,g(x)=$\sqrt{x+1}\sqrt{x+2}$ | D. | f(x)=1,g(x)=$\left\{\begin{array}{l}1,x>0\\ 1,x<0\end{array}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{4}{3}$或0 | B. | $\frac{4}{3}$或0 | C. | $-\frac{4}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com