,、).

(1)求的值; (2)求證:數(shù)列各項(xiàng)均為奇數(shù).

 

【答案】

(1).(2)略

【解析】本試題主要考查了二項(xiàng)式定理的運(yùn)用。

解:(1)當(dāng)時(shí),

,,所以.

(2)證:由數(shù)學(xué)歸納法(i)當(dāng)時(shí),易知,為奇數(shù);

(ii)假設(shè)當(dāng)時(shí),,其中為奇數(shù);

則當(dāng)時(shí),

所以,又,所以是偶數(shù),

而由歸納假設(shè)知是奇數(shù),故也是奇數(shù).

綜上(i)、(ii)可知,的值一定是奇數(shù).

證法二:因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012061917524195396868/SYS201206191754147195962962_DA.files/image022.png">

當(dāng)為奇數(shù)時(shí),

則當(dāng)時(shí),是奇數(shù);當(dāng)時(shí),

因?yàn)槠渲?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2012061917524195396868/SYS201206191754147195962962_DA.files/image026.png">中必能被2整除,所以為偶數(shù),

于是,必為奇數(shù);

當(dāng)為偶數(shù)時(shí),

其中均能被2整除,于是必為奇數(shù).綜上可知,各項(xiàng)均為奇數(shù)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
(1)若函數(shù)f(x)=2x2+1,圖象上P(1,3)及鄰近上點(diǎn)Q(1+△x,3+△y),則
△y
△x
=4+2△x;
(2)加速度是動(dòng)點(diǎn)位移函數(shù)S(t)對(duì)時(shí)間t的導(dǎo)數(shù);
(3)
1
3
lim
h→0
f(a+3h)-f(a)
h
=f′(a)

其中正確的命題有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①在函數(shù)y=cos(x-
π
4
)cos(x+
π
4
)的圖象中,相鄰兩個(gè)對(duì)稱中心的距離為π;
②函數(shù)y=
x+3
x-1
的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱;
③關(guān)于x的方程ax2-2ax-1=0有且僅有一個(gè)實(shí)數(shù)根,則實(shí)數(shù)a=-1;
④已知命題p:對(duì)任意的x∈R,都有sinx≤1,則¬p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,則角C等于30°或150°.
其中所有真命題的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(n)表示n2+1(n∈N×)的各位數(shù)字之和,如142+1=197,1+9+7=17,f(14)=17,記f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n),k∈N×,則f2010(8)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax2+1
x
-lnx
,a∈R.
(1)若a=2,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)求證:對(duì)于任意正整數(shù)n,
n+2
n(n+1)
>ln
n+1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l經(jīng)過點(diǎn)A(1,2),B(-2,5),則直線l的斜率是
-1
-1

查看答案和解析>>

同步練習(xí)冊答案