圓心在原點且與直線相切的圓方程為   
【答案】分析:由直線與圓相切可得,圓心(0,0)到直線x+y-=0的距離d=r,從而可求r,進而可求圓的方程
解答:解:設所求的圓的方程為:x2+y2=r2
∵直線 x+y-=0與圓相切
圓心(0,0)到直線x+y-=0的距離d==1=r
所求的圓的方程為:x2+y2=1
故答案為:x2+y2=1
點評:本題主要考查了直線與圓的相切關系的應用,圓的標準方程的求解,解題的關鍵是熟練應用直線與圓的相切的性質(zhì).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給定橢圓C:
x2
a2
+
y2
b2
=1(>b>0),將圓心在原點O、半徑是
a2+b2
的圓稱為橢圓C的“準圓”.已知橢圓C的方程為
x2
3
+y2=1.
(Ⅰ)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(Ⅱ)若點A是橢圓C的“準圓”與X軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍;
(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)m≠n且m2sinθ-mcosθ+
π
3
=0,n2sinθ-ncosθ+
π
3
=0
,則連接(m,m2),(n,n2)兩點的直線與圓心在原點上的單位圓的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•黃埔區(qū)一模)給定橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,稱圓心在原點O、半徑是
a2+b2
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(
2
,0)
,其短軸的一個端點到點F的距離為
3

(1)求橢圓C和其“準圓”的方程;
(2)過橢圓C的“準圓”與y軸正半軸的交點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,求l1,l2的方程;
(3)若點A是橢圓C的“準圓”與x軸正半軸的交點,B,D是橢圓C上的兩相異點,且BD⊥x軸,求
AB
AD
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省高三3月月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分15分)

給定橢圓C:,稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為,其短軸的一個端點到點的距離為

(1)求橢圓C和其“準圓”的方程;

(2)若點是橢圓C的“準圓”與軸正半軸的交點,是橢圓C上的兩相異點,且軸,求的取值范圍;

(3)在橢圓C的“準圓”上任取一點,過點作直線,使得與橢圓C都只有一個交點,試判斷是否垂直?并說明理由.

 

查看答案和解析>>

同步練習冊答案