已知點(diǎn)(,是常數(shù)),且動(dòng)點(diǎn)到軸的距離比到點(diǎn)的距離小.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)(i)已知點(diǎn),若曲線上存在不同兩點(diǎn)、滿足,求實(shí)數(shù)的取值范圍;
(ii)當(dāng)時(shí),拋物線上是否存在異于、的點(diǎn),使得經(jīng)過、、三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
(1)動(dòng)點(diǎn)的軌跡的方程為;(2)(i)實(shí)數(shù)的取值范圍是;
(ii)詳見解析.
解析試題分析:(1)首先由題意得到動(dòng)點(diǎn)到直線和動(dòng)點(diǎn)到點(diǎn)的距離相等,從而得到動(dòng)點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn),以直線為準(zhǔn)線的拋物線,從而求出軌跡的方程;(2)(i)先由得到點(diǎn)為線段的中點(diǎn),并設(shè)點(diǎn),從而得到,并設(shè)直線的方程為,與拋物線的方程聯(lián)立,結(jié)合與韋達(dá)定理在中消去,從而求解參數(shù)的取值范圍;(ii)先假設(shè)點(diǎn)存在,先利用(i)中的條件求出點(diǎn)、兩點(diǎn)的坐標(biāo),并設(shè)點(diǎn)的坐標(biāo)為,設(shè)圓的圓心坐標(biāo)為,利用、、三點(diǎn)為圓上的點(diǎn),得到及,利用兩點(diǎn)間的距離公式得到方程組,在方程組得到、與的關(guān)系式,然后利用導(dǎo)數(shù)求出拋物線在點(diǎn)的切線的斜率,利用切線與圓的半徑垂直,得到兩直線斜率之間的關(guān)系,進(jìn)而求出的值,從而求出點(diǎn)的坐標(biāo).
試題解析:(1);
(2)(i)設(shè),兩點(diǎn)的坐標(biāo)為,且,
∵,可得為的中點(diǎn),即.
顯然直線與軸不垂直,設(shè)直線的方程為,即,
將代入中,得. 2分
∴ ∴. 故的取值范圍為.
(ii)當(dāng)時(shí),由(i)求得,的坐標(biāo)分別為
假設(shè)拋物線上存在點(diǎn)(且),使得經(jīng)過、、三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線.設(shè)圓的圓心坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)F(-c,0)是橢圓的左焦點(diǎn),直線l:x=-與x軸交于P點(diǎn),MN為橢圓的長(zhǎng)軸,已知|MN|=8,且|PM|=2|MF|。
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P的直線m與橢圓相交于不同的兩點(diǎn)A,B。
①證明:∠AFM=∠BFN;
②求△ABF面積的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|,當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,過點(diǎn)的兩直線與拋物線相切于A、B兩點(diǎn), AD、BC垂直于直線,垂足分別為D、C.
(1)若,求矩形ABCD面積;
(2)若,求矩形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在軸上,焦距為2,離心率為
(1)求橢圓C的方程;
(2)設(shè)直線經(jīng)過點(diǎn)(0,1),且與橢圓C交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=kx+b與橢圓交于A、B兩點(diǎn),記△AOB的面積為S.
(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓:的左、右焦點(diǎn)分別是、,下頂點(diǎn)為,線段的中點(diǎn)為(為坐標(biāo)原點(diǎn)),如圖.若拋物線:與軸的交點(diǎn)為,且經(jīng)過、兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),為拋物線上的一動(dòng)點(diǎn),過點(diǎn)作拋物線的切線交橢圓于、兩點(diǎn),求面積的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com