5.已知tanα=$\sqrt{2}$,cos(α+β)=-$\frac{\sqrt{3}}{3}$,且α,β∈(0,$\frac{π}{2}$),則tanβ=2$\sqrt{2}$;2α+β=π.

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求sin(α+β),tan(α+β),利用兩角和的正切函數(shù)公式可求tanβ,進而利用二倍角的正切函數(shù)公式可求tan2α,利用兩角和的正切函數(shù)公式可求tan(2α+β),結(jié)合范圍2α+β∈(0,$\frac{3π}{2}$),利用正切函數(shù)的性質(zhì)可求2α+β=π.

解答 解:∵α,β∈(0,$\frac{π}{2}$),cos(α+β)=-$\frac{\sqrt{3}}{3}$,
∴α+β∈(0,π),
∴sin(α+β)=$\sqrt{1-co{s}^{2}(α+β)}$=$\frac{\sqrt{6}}{3}$,
∵tanα=$\sqrt{2}$,
∴tan(α+β)=$\frac{sin(α+β)}{cos(α+β)}$=-$\sqrt{2}$=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{\sqrt{2}+tanβ}{1-\sqrt{2}tanβ}$,
∴解得:tanβ=2$\sqrt{2}$,
∵tan2$α=\frac{2tanα}{1-ta{n}^{2}α}$=-2$\sqrt{2}$,
∴tan(2α+β)=$\frac{tan2α+tanβ}{1-tan2αtanβ}$=0,
又∵2α+β∈(0,$\frac{3π}{2}$),
∴2α+β=π.
故答案為:2$\sqrt{2}$,π.

點評 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角的正切函數(shù)公式,正切函數(shù)的性質(zhì)的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在正方體中ABCD-A1B1C1D1,E、F分別為AB,AA1的中點.求證:
(1)EF∥D1C;
(2)CE,D1F,DA三線共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=$\frac{1}{3}$tan(-7x+$\frac{π}{3}$)的一個對稱中心是(  )
A.($\frac{5π}{21}$,0)B.($\frac{π}{21}$,0)C.($\frac{π}{42}$,0)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{{x}^{2}}{{e}^{x}}$.
(1)若函數(shù)f(x)的曲線上一條切線經(jīng)過點M(0,0),求該切線方程;
(2)求函數(shù)f(x)在區(qū)間[-3,+∞)上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.要得到y(tǒng)=cos(3x-$\frac{π}{3}$)的圖象,只需將函數(shù)y=sin3x的圖象( 。
A.向左平移$\frac{π}{18}$個長度單位B.向右左平移$\frac{π}{18}$個長度單位
C.向左平移$\frac{π}{9}$個長度單位D.向右左平移$\frac{π}{9}$個長度單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知集合A={x|y=$\frac{1}{\sqrt{-{x}^{2}+x+2}}$},B={y|y=x${\;}^{\frac{1}{3}}$,x∈R},C={x|mx<-1},
(1)求∁R(A∩B);
(2)是否存在實數(shù)m使得(A∩B)⊆C成立,若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在直角坐標系內(nèi),已知A(3,2)是圓C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x-y+1=0和x+y-7=0,若圓C上存在點P,使∠MPN=90°,其中M,N的坐標分別為(-m,0),(m,0),則實數(shù)m的取值集合為[3,7].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列各組函數(shù)表示相同函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x2
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$     g(t)=|t|D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某地植被面積 x(公頃)與當?shù)貧鉁叵陆档亩葦?shù)y(°C)之間有如下的對應(yīng)數(shù)據(jù):
x(公頃)2040506080
y(°C)34445
(1)請用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)根據(jù)(1)中所求線性回歸方程,如果植被面積為200公頃,那么下降的氣溫大約是多少℃?
(附:回歸方程系數(shù)公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

同步練習冊答案