下列結(jié)論錯誤的是( )
A.命題“若p,則q”與命題“若¬q,則¬p”互為逆否命題
B.命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為真
C.若p∨q為假命題,則p、q均為假命題
D.“若am2<bm2,則a<b”的逆命題為真命題
【答案】分析:寫出A命題的逆否命題,即可判斷A的正誤;對于B,判斷兩個命題的真假即可判斷正誤;對于C直接判斷即可;對于D命題的逆命題為“若a<b,則am2<bm2”然后判斷即可;
解答:解:對于A:因為命題“若p,則q”的逆否命題是命題“若¬q,則¬p”,所以).命題“若p,則q”與命題“若¬q,則¬p”互為逆否命題;故正確.
對于B:命題p:?x∈[0,1],ex≥1,為真命題,命題q:?x∈R,x2+x+1<0,為假命題,則p∨q為真,故命題B為真命題.
對于C:若p∨q為假命題,則p、q均為假命題,正確;
對于D:“若am2<bm2,則a<b”的逆命題為:“若a<b,則am2<bm2”,而當m2=0時,由a<b,得am2=bm2,
所以“am2<bm2,則a<b”的逆命題為假,故命題D不正確.
故選D.
點評:本題考查了命題的真假判斷與應(yīng)用,訓(xùn)練了特稱命題的否定的格式,同時訓(xùn)練了復(fù)合命題真假的判斷,有時利用反例判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正方體ABCD-A1B1C1D1棱長為1,線段B1D1上有兩個動點E,F(xiàn),且EF=
2
2
,則下列結(jié)論錯誤的是( 。
A、AC⊥平面BEF
B、AE,BF始終在同一個平面內(nèi)
C、EF∥平面ABCD
D、三棱錐A-BEF的體積為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知函數(shù)f(x)=3cos(2x-
π
3
)(x∈R),則下列結(jié)論錯誤的是( 。
A、函數(shù)f(x)的圖象的一條對稱軸為x=
6
B、點(-
π
12
,0)是函數(shù)f(x)圖象上的一個對稱中心
C、函數(shù)f(x)在區(qū)間(
π
12
,
π
4
)上的最大值為3
D、函數(shù)f(x)的圖象可以由函數(shù)g(x)=3cos2x圖象向右平移
π
3
個單位得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、下列結(jié)論錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論錯誤的是(  )
A、命題“若p,則q”與命題“若¬q,則¬p”互為逆否命題
B、命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
C、命題“?x∈R,cos(x+
π
2
)=-sinx”的否定是“?x∈R,cos(x+
π
2
)≠-sinx”
D、對于a,b,c∈R,“a>b”是“ac2>bc2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,若存在閉區(qū)間[a,b]?D,使得函數(shù)f(x)滿足:①f(x)在[a,b]上是單調(diào)函數(shù);②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.下列結(jié)論錯誤的是(  )
A、函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”
B、函數(shù)f(x)=ex(x∈R)不存在“和諧區(qū)間”
C、函數(shù)f(x)=
4x
x2+1
(x≥0)存在“和諧區(qū)間”
D、函數(shù)f(x)=loga(ax-
1
8
)
(a>0,a≠1)不存在“和諧區(qū)間”

查看答案和解析>>

同步練習(xí)冊答案