已知定義在R的奇函數(shù)f(x),在[0,+∞)上單調(diào)遞減,且f(2-a)+f(1-a)<0,則a的取值范圍是( 。
A、(
3
2
,2]
B、(
3
2
,+∞)
C、[1,
3
2
)
D、(-∞,
3
2
)
分析:已知函數(shù)為奇函數(shù),所以f(-x)=-f(x),而f(2-a)+f(1-a)<0得到f(2-a)<-f(1-a)=f(a-1),根據(jù)函數(shù)在[0,+∞)上單調(diào)遞減可知,2-a>a-1,求出解集即可.
解答:解:因?yàn)閒(2-a)+f(1-a)<0得f(2-a)<-f(1-a),
因?yàn)楹瘮?shù)為奇函數(shù),所以f(-x)=-f(x),則-f(1-a)=f(a-1).
所以f(2-a)<f(a-1),
根據(jù)函數(shù)在[0,+∞)上單調(diào)遞減可知2-a>a-1,解得a<
3
2

故選D
點(diǎn)評(píng):讓學(xué)生掌握奇函數(shù)成立的條件,會(huì)用函數(shù)單調(diào)性解決數(shù)學(xué)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R的奇函數(shù)f(x)滿(mǎn)足f(x+2)=-f(x),且當(dāng)0≤x≤1時(shí),f(x)=x,則f(
15
2
)
=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R的奇函數(shù)f(x)滿(mǎn)足f(x-4)=-f(x),且x∈[0,2]時(shí),f(x)=log2(x+1),下面四種說(shuō)法
①f(3)=1;
②函數(shù)f(x)在[-6,-2]上是增函數(shù);
③函數(shù)f(x)關(guān)于直線(xiàn)x=4對(duì)稱(chēng);
④若m∈(0,1),則關(guān)于x的方程f(x)-m=0在[-8,8]上所有根之和為-8,
其中正確的序號(hào)
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R的奇函數(shù)f(x),在[0,+∞)上單調(diào)遞減,且 f(2-a)+f(1-a)<0,則a的取值
(-∞,
3
2
(-∞,
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省濟(jì)寧市魚(yú)臺(tái)一中高三(上)期末數(shù)學(xué)模擬試卷(文科)(解析版) 題型:填空題

已知定義在R的奇函數(shù)f(x)滿(mǎn)足f(x-4)=-f(x),且x∈[0,2]時(shí),f(x)=log2(x+1),下面四種說(shuō)法
①f(3)=1;
②函數(shù)f(x)在[-6,-2]上是增函數(shù);
③函數(shù)f(x)關(guān)于直線(xiàn)x=4對(duì)稱(chēng);
④若m∈(0,1),則關(guān)于x的方程f(x)-m=0在[-8,8]上所有根之和為-8,
其中正確的序號(hào)   

查看答案和解析>>

同步練習(xí)冊(cè)答案