(本題滿分12分)一個口袋內(nèi)裝有大小相同的6個小球,其中2個紅球,記為A1、A2,4個黑球,記為B1、B2、B3、B4,從中一次摸出2個球.
(Ⅰ)寫出所有的基本事件;
(Ⅱ)求摸出的兩個球顏色不同的概率.

(Ⅰ)A1,A2),(A1,B1),( A1,B2),(A1,B3),( A1,B4),(A2,B1),(A2, B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4) ;(Ⅱ)

解析試題分析:(Ⅰ)則從中一次摸出2個球,有如下基本事件:(A1,A2),(A1,B1),( A1,B2),(A1,B3),( A1,B4),(A2,B1),(A2, B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4) 共有15個基本事件……………….5分
(Ⅱ)從袋中的6個球中任取2個,所取的2球顏色不同的方法有:     
(A1,B1),( A1,B2),(A1,B3),( A1,B4),(A2,B1),(A2, B2),(A2,B3),(A2,B4),共有8種,
故所求事件的概率P =    ……………………12分
考點:列舉法計算基本事件數(shù);隨機事件發(fā)生的概率。
點評:本題考查列舉法計算基本事件數(shù)及隨機事件發(fā)生的概率,解題的關(guān)鍵是熟練運用分類列舉的方法及事件的性質(zhì)將所有的基本事件一一列舉出來,運用公式求出概率,列舉法求概率適合基本事件數(shù)不太多的概率求解問題,本題考查了分類的思想。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

甲、乙等五名奧運志愿者被隨機地分到四個不同的崗位服務(wù),每個崗位至少有一名志愿者.(Ⅰ)求甲、乙兩人同時參加崗位服務(wù)的概率;(Ⅱ)求甲、乙兩人不在同一個崗位服務(wù)的概率;(Ⅲ)設(shè)隨機變量為這五名志愿者中參加崗位服務(wù)的人數(shù), 可取何值?請求出相應(yīng)的值的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)關(guān)于的一元二次方程.
(1)若都是從集合中任取的數(shù)字,求方程有實根的概率;
(2)若是從區(qū)間[0,4]中任取的數(shù)字,是從區(qū)間[1,4]中任取的數(shù)字,求方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)某項計算機考試按科目A、科目B依次進行,只有大拿感科目A成績合格時,才可繼續(xù)參加科目B的考試,已知每個科目只允許有一次補考機會,兩個科目均合格方快獲得證書,現(xiàn)某人參加這項考試,科目A每次考試成績合格的概率為,科目B每次考試合格的概率為,假設(shè)各次考試合格與否均互不影響.
(Ⅰ)求他不需要補考就可獲得證書的概率;
(Ⅱ)在這次考試過程中,假設(shè)他不放棄所有的考試機會,記他參加考試的次數(shù)為,求隨即變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,平面區(qū)域中的點的坐標滿足,從區(qū)域中隨機取點
(Ⅰ)若,,求點位于第四象限的概率;
(Ⅱ)已知直線與圓相交所截得的弦長為,求的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)一個袋中裝有大小和質(zhì)地都相同的10個球,其中黑球4個,白球5個,紅球1個。
(1)從袋中任意摸出3個球,記得到白球的個數(shù)為X,求隨機變量X的概率分布和數(shù)學期望E(X);
(2)每次從袋中隨機地摸出一球,記下顏色后放回.求3次摸球后,摸到黑球的次數(shù)大于摸到白球的次數(shù)的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)將52名志愿者分成A,B兩組參加義務(wù)植樹活動,A組種植150捆白楊樹苗,B組種植200捆沙棘樹苗. 假定A,B兩組同時開始植樹.
(1)根據(jù)歷年統(tǒng)計,每名志愿者種植一捆白楊樹苗用時小時,種植一捆沙棘用時小時,應(yīng)如何分配A,B兩組的人數(shù),使植樹活動持續(xù)的時間最短?
(2)在按(1)分配的人數(shù)種植1小時后發(fā)現(xiàn),每名志愿者種植一捆白楊仍用時小時,而每名志愿者種植一捆沙棘實際用時小時,于是,從A組抽調(diào)6名志愿者加入B組繼續(xù)種植,求植樹活動持續(xù)的時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)為了解初三學生女生身高情況,某中學對初三女生身高進行了一次抽樣調(diào)查,根據(jù)所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別       頻數(shù)   頻率   
145.5~149.5      1       0.02   
149.5~153.5      4       0.08   
153.5~157.5    22     0.44   
157.5~161.5      13      0.26   
161.5~165.5      8       0.16   
165.5~169.5     m       n  
合 計        M       N  
(1)求出表中所表示的數(shù)m,n,M,N分別是多少?
(2)畫出頻率分布直方圖和頻率分布折線圖.
(3)若要從中再用分層抽樣方法抽出10人作進一步調(diào)查,則身高在[153.5,161.5)范圍內(nèi)的應(yīng)抽出多少人?
(4)根據(jù)頻率分布直方圖,分別求出被測女生身高的眾數(shù),中位數(shù)和平均數(shù)?(結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩人做出拳游戲(錘子、剪刀、布),錘子記為“⊥”,剪刀記為“×”,布記為“□”
求:(1)列出實驗所有可能的結(jié)果(2)平局的概率;(3)甲贏的概率;

查看答案和解析>>

同步練習冊答案