已知x,y滿足
y≤x
x+y≤1
y≥-1
,則z=2x+y的最大值為
 
分析:先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值,z=2x+y表示直線在y軸上的截距,只需求出可行域直線在y軸上的截距最大值即可.
解答:精英家教網(wǎng)解:
y≤x
x+y≤1
y≥-1
,在坐標(biāo)系中畫(huà)出圖象,
三條線的交點(diǎn)分別是A(-1,-1),B(
1
2
1
2
),
C(2,-1),
在△ABC中滿足z=2x+y的最大值是點(diǎn)C,代入得最大值等于3.
故答案為:3.
點(diǎn)評(píng):本題只是直接考查線性規(guī)劃問(wèn)題,是一道較為簡(jiǎn)單的試題.近年來(lái)高考線性規(guī)劃問(wèn)題高考數(shù)學(xué)考試的熱點(diǎn),數(shù)形結(jié)合是數(shù)學(xué)思想的重要手段之一,體現(xiàn)了數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足條件
x-y+5≥0
x+y≥0
x≤3
,則z=
x+y+2
x+3
的最小值((  )
A、4
B、
13
6
C、
1
3
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y滿足條件
x-4y≤-3
3x+5y≤25
x≥1
,則z=2x+y的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足
y≤x,x≥0
2x+y+k≤0
(k為常數(shù)),z=x+3y的最大值為8,則k=
-6
-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足不等式組
x+2y≤8
2x+y≤8
x≥0
y≥0
.求:
(1)目標(biāo)函數(shù)z=3x+y的最大值?
(2)目標(biāo)函數(shù)z=3x-y的最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足
y+|x-2|≤3
y≥2
,不等式x2+9y2≥axy恒成立,則a的取值范圍為
a≤
15
2
a≤
15
2

查看答案和解析>>

同步練習(xí)冊(cè)答案