△ABC中,∠A,∠B,∠C所對(duì)的邊長(zhǎng)分別為a,b,c,若∠C=90°,a=8,∠B=30°,則b=
 
,c=
 
考點(diǎn):正弦定理
專題:解三角形
分析:利用直角三角形的邊角關(guān)系即可得出.
解答: 解:∵∠C=90°,a=8,∠B=30°,
b=
a
tanA
=
8
tan30°
=8
3

c=2a=16.
故答案分別為:8
3
;16.
點(diǎn)評(píng):本題考查了直角三角形的邊角關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,點(diǎn)E在邊CD上,若在平行四邊形ABCD內(nèi)部隨機(jī)取一個(gè)點(diǎn)Q,則點(diǎn)Q取自△ABE內(nèi)部的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1+x)•(2-x)10=b0+b1(x-1)+b2(x-1)2+…+b11(x-1)11,則b1+b2+…b11=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(m+1)x2+4mx+2m-1.
(1)m為何值時(shí),函數(shù)的圖象與x軸有兩個(gè)零點(diǎn);
(2)如果函數(shù)兩個(gè)零點(diǎn)在原點(diǎn)左右兩側(cè),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的外接圓的半徑為1,且2B=A+C,求此三角形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)f(x)=Asin(2x+φ)(A>0,|φ|<
π
2
)的圖象過點(diǎn)(0,
3
),則f(x)的圖象的一個(gè)對(duì)稱中心是( 。
A、(-
π
3
,0)
B、(-
π
6
,0)
C、(
π
6
,0)
D、(
π
4
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=-
1
2
t
y=2+
3
2
t
(t為參數(shù)),若以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知圓C的極坐標(biāo)方程為ρ=4cosθ,設(shè)M是圓C上任一點(diǎn),連結(jié)OM并延長(zhǎng)到Q,使|OM|=|MQ|.
(Ⅰ)求點(diǎn)Q軌跡的直角坐標(biāo)方程;
(Ⅱ)若直線l與點(diǎn)Q軌跡相交于A,B兩點(diǎn),點(diǎn)P的直角坐標(biāo)為(0,2),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為( 。
A、(-∞,0)
B、(0,+∞)
C、(-∞,e4
D、(e4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,其中a1=1,a7=13
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=
1
anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和,當(dāng)不等式λTn<n+8•(-1)n(n∈N*)恒成立時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案