(2007
上海春,16)如圖所示,在棱長為2的正方體ABCD-中,E、F分別是和AB的中點,求異面直線與CE所成角的大小(結果用反三角函數(shù)值表示).科目:高中數(shù)學 來源: 題型:044
(2007
上海春,17)求出一個數(shù)學問題的正確結論后,將其作為條件之一,提出與原來問題有關的新問題,我們把它稱為原來問題的一個“逆向”問題.例如,原來問題是“若正四棱錐底面邊長為
4,側棱長為3,求該正四棱錐的體積”.求出體積后,它的一個“逆向”問題可以是“若正四棱錐底面邊長為4,體積為,求側棱長”;也可以是“若正四棱錐的體積為,求所有側面面積之和的最小值”.試給出問題“在平面直角坐標系
xOy中,求點P(2,1)到直線3x+4y=0的距離”的一個有意義的“逆向”問題,并解答你所給出的“逆向”問題.查看答案和解析>>
科目:高中數(shù)學 來源: 題型:044
(2007
上海春,20)通常用a、b、c分別表示△ABC的三個內角A、B、C所對邊的邊長,R表示△ABC的外接圓半徑.(1)
如圖所示,在以O為圓心、半徑為2的⊙O中,BC和BA是圓的弦,其中BC=2,∠ABC=45°,求弦AB的長;(2)
在△ABC中,若∠C是鈍角,求證:;(3)
給定三個正實數(shù)a、b、R,其中b≤a.問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在、存在一個或存在兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.查看答案和解析>>
科目:高中數(shù)學 來源: 題型:044
(2007
上海春,19)某人定制了一批地磚.每塊地磚(如圖(1)所示)是邊長為0.4米的正方形ABCD,點E、F分別在邊BC和CD上,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價格之比依次為3∶2∶1.若將此種地磚按圖(2)所示的形式鋪設,能使中間的深色陰影部分成四邊形EFGH.(1)
求證:四邊形EFGH是正方形;(2)E
、F在什么位置時,定制這批地磚所需的材料費用最省?查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com