7.在△ABC中,AB=1,AC=3,B=60°,則cosC=( 。
A.-$\frac{5}{6}$B.$\frac{5}{6}$C.-$\frac{\sqrt{33}}{6}$D.$\frac{\sqrt{33}}{6}$

分析 由已知利用大邊對(duì)大角可得C為銳角,利用正弦定理可求sinC的值,結(jié)合同角三角函數(shù)基本關(guān)系式可求cosC的值.

解答 解:∵AC>AB,
∴C<B=60°,
又∵$\frac{1}{sinC}=\frac{3}{sin60°}$,
∴sinC=$\frac{\sqrt{3}}{6}$,
∴cosC=$\frac{\sqrt{33}}{6}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了大邊對(duì)大角,正弦定理,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知直線l:y=$\sqrt{3}$x+4,動(dòng)圓O:x2+y2=r2(1<r<2),菱形ABCD的一個(gè)內(nèi)角為60°,頂點(diǎn)A,B在直線l上,頂點(diǎn)C,D在圓O上.當(dāng)r變化時(shí),菱形ABCD的面積S的取值范圍是(0,$\frac{3\sqrt{3}}{2}$)∪($\frac{3\sqrt{3}}{2}$,6$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在銳角△ABC中,A,B,C所對(duì)邊分別為a,b,c,且b2-a2=ac,則$\frac{1}{tanA}$-$\frac{1}{tanB}$的取值范圍為( 。
A.(1,+∞)B.(1,$\frac{2}{3}$$\sqrt{3}$)C.(1,$\sqrt{3}$)D.($\sqrt{2}$,$\frac{2}{3}$$\sqrt{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=6+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(其中t為參數(shù)).現(xiàn)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=6cosθ.
(Ⅰ) 寫出直線l普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ) 過(guò)點(diǎn)M(-1,0)且與直線l平行的直線l1交C于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(Ⅰ)請(qǐng)?jiān)诖痤}卡上將如表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(Ⅱ)將y=f(x)圖象上所有點(diǎn)向左平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度,得到y(tǒng)=g(x)圖象,求y=g(x)的圖象離原點(diǎn)O最近的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.y=sin(2x+φ)(0<φ<π)為偶函數(shù),則其單調(diào)遞減區(qū)間為[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則它表面積是( 。
A.24+$\sqrt{5}$B.24-πC.24+($\sqrt{5}$-1)πD.20+($\sqrt{5}$-1)π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)關(guān)于x的方程x2-mx-1=0有兩個(gè)實(shí)根α,β,α<β,函數(shù)f(x)=$\frac{2x-m}{{x}^{2}+1}$.若λ,μ均為正實(shí)數(shù),則|f($\frac{λα+μβ}{λ+μ}$)-f($\frac{μα+λβ}{λ+μ}$)|(  )|α-β|
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)f(x)=sin(2x+φ)(其中0<φ<π)滿足f(-x)=f(x),則(  )
A.f(x)在$(0,\frac{π}{2})$單調(diào)遞減B.f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞減
C.f(x)在$(0,\frac{π}{2})$單調(diào)遞增D.f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案