1.已知A、B、C、D是同一球面上的四個點,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=2,則該球的表面積為( 。
A.$\frac{16π}{3}$B.$\frac{24π}{3}$C.$\frac{32π}{3}$D.$\frac{48π}{3}$

分析 畫出幾何體的圖形,把A、B、C、D擴展為三棱柱,上下底面中心連線的中點與A的距離為球的半徑,求出半徑即可求解球的表面積.

解答 解:由題意畫出幾何體的圖形如圖,
把A、B、C、D擴展為三棱柱,上下底面中心連線的中點與A的距離
為球的半徑,
AD=2AB=2,△ABC是正三角形,所以AE=$\frac{\sqrt{3}}{3}$,AO=$\sqrt{\frac{4}{3}}$.
所求球的表面積為:4π($\sqrt{\frac{4}{3}}$)2=$\frac{16}{3}$π.
故選:A.

點評 本題考查球的表面積的求法,球的內(nèi)接體問題,考查空間想象能力以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+4x-3,\;x≤1\\ lnx,\;x>1\end{array}$,若f(x)=a(x-1)有且只有一個實數(shù)解,則a的取值范圍是( 。
A.[1,2]B.(-∞,0]C.(-∞,0]∪[1,2]D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=4$\sqrt{3}$sin(ωx+$\frac{π}{3}$)(ω>0)在平面直角坐標系中的部分圖象如圖所示,若∠ABC=90°,則ω=( 。
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{π}{6}$D.$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD為等腰梯形,E為PD中點,PA⊥平面ABCD,AD∥BC,AC⊥BD,AD=2BC=4.
(1)證明:平面EBD⊥平面PAC;
(2)若直線PD與平面PAC所成的角為30°,求二面角A-BE-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.“a=1”是“函數(shù)f(x)=x2+2ax-2在區(qū)間(-∞,-1]上單調(diào)遞減”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓$\frac{8{x}^{2}}{81}$+$\frac{{y}^{2}}{36}$=1上一點M(x0,y0),且x0<0,y0=2.
(1)求x0的值;
(2)求過點M且與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1共焦點的橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設集合A={x|-1≤x≤2},B={x|0≤x≤4},則venn圖陰影區(qū)域表示的集合是( 。
A.{x|0≤x≤2}B.{x|1≤x≤2}C.{x|0≤x≤4}D.{x|1≤x≤4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)=ln(2x2+2)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)f(x)=ax-4a-x(a>0且a≠1)在[0,2]上的最大值與最小值之和為0,則a的值為( 。
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

同步練習冊答案