給出以下四個(gè)命題:
①若x,y∈N*,x+y是奇數(shù),則x,y中一個(gè)是奇數(shù)一個(gè)是偶數(shù);
②若-2≤x<3,則(x+2)(x-3)≤0;
③若x=y=0,則x2+y2=0;
④若x2-3x+2=0,則x=1或x=2.
那么( 。
A、①為假命題
B、②的否命題為真
C、③的逆否命題為假
D、④的逆命題為真
考點(diǎn):命題的真假判斷與應(yīng)用
專(zhuān)題:簡(jiǎn)易邏輯
分析:由兩個(gè)偶函數(shù)或奇函數(shù)的和為偶函數(shù),一個(gè)偶函數(shù)和一個(gè)奇函數(shù)的和為奇函數(shù)可得A錯(cuò)誤;
寫(xiě)出命題的否定判斷B錯(cuò)誤;由互為逆否命題的兩個(gè)命題共真假說(shuō)明C錯(cuò)誤;
寫(xiě)出命題的逆命題說(shuō)明D正確.
解答: 解:①若x,y∈N*,x+y是奇數(shù),則x,y中一個(gè)是奇數(shù)一個(gè)是偶數(shù)為真命題,選項(xiàng)A錯(cuò)誤;
②若-2≤x<3,則(x+2)(x-3)≤0的否命題為:若x<-2或x≥3,則(x+2)(x-3)>0為假命題,原因是當(dāng)x=3時(shí)(x+2)(x-3)=0,選項(xiàng)B錯(cuò)誤;
③若x=y=0,則x2+y2=0為真命題,則其逆否命題為真命題,選項(xiàng)C錯(cuò)誤;
④若x2-3x+2=0,則x=1或x=2的逆命題為:若x=1或x=2,則x2-3x+2=0,為真命題,選項(xiàng)D正確.
故選:D.
點(diǎn)評(píng):本題考查了命題的真假判斷與應(yīng)用,考查了充分條件、必要條件的判定方法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在用分析法證明命題p時(shí),發(fā)現(xiàn)要證明p成立,只需證明命題q成立即可,這就說(shuō)明p是q的( 。
A、充分條件
B、必要條件
C、充要條件
D、即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x≥0,則 x+
2
x+1
的最小值是(  )
A、2
B、3
C、2
2
D、2
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-2x-3<0},B={x|x>1},則A∩B=( 。
A、(1,+∞)
B、(-∞,3)
C、(1,3)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tan
16
3
π的值為( 。
A、-
3
3
B、
3
3
C、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐的底面邊長(zhǎng)為6,斜高為3,則此三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an}中,Sn是數(shù)列{an}的前n項(xiàng)和,且2Sn=an2+an,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)c為實(shí)數(shù),如果對(duì)任意的正整數(shù)n,不等式
an+2
-
an
c
an+2
恒成立,求證:c的最大值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐曲線(xiàn)E:
(x-c)2+y2
+
(x+c)2+y2
=4c(c為正常數(shù),過(guò)原點(diǎn)O的直線(xiàn)與曲線(xiàn)E交于P、A兩點(diǎn),其中P在第一象限,B是曲線(xiàn)E上不同于P,A的點(diǎn),直線(xiàn)PB,AB的斜率分別為k1,k2,且k1k2≠0.
(Ⅰ)若P點(diǎn)坐標(biāo)為(1,
3
2
),求圓錐曲線(xiàn)E的標(biāo)準(zhǔn)方程;
(Ⅱ)求k1•k2的值;
(Ⅲ)若PD⊥x軸于點(diǎn)D,D點(diǎn)坐標(biāo)為(m,0),存在μ∈R使
AD
BD
,且直線(xiàn)AB與直線(xiàn)l:x=
4c2
m
交于點(diǎn)M,記直線(xiàn)PA、PM的斜率分別為k3,k4,問(wèn)是否存在常數(shù)λ,使k1+k3=λk4,若存在,求出λ的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(mx+1)(lnx-1).
(1)若m=1,求曲線(xiàn)y=f(x)在x=1的切線(xiàn)方程;
(2)若函數(shù)f(x)在(0,+∞)上是增函數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案