分析 (1)推導(dǎo)出OA⊥OB,OA⊥BO1,OB1⊥BO1,OA⊥BO1,從而BO1⊥平面AOB1,由此能證明AB1⊥BO1.
(2)以O(shè)為原點(diǎn),OA、OB、OO1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,利用向量法能求出直線AO1與平面AOB1所成的角的正切值.
(3)求出平面OA B1的一個(gè)法向量和平面O1A B1的一個(gè)法向量,利用向量法能求出二面角O-AB1-O1的余弦值.
解答 (本小題滿分13分)
證明:(1)由題設(shè)知OA⊥OO1,且平面AOO1A1⊥平面OBB1O1,
平面AOO1A1∩平面OBB1O1=OO1,
則OA⊥平面OBB1O1,所以O(shè)A⊥OB,OA⊥BO1,
又因?yàn)?O{O_1}=\sqrt{3}$.O1B1=1,OB=3,
所以∠OO1B=60°,∠O1OB1=30°,
從而OB1⊥BO1,又因?yàn)镺A⊥BO1,OB1∩OA=O,
故BO1⊥平面AOB1,又AB1?平面AOB1,故AB1⊥BO1.…(4分)
解:(2)以O(shè)為原點(diǎn),OA、OB、OO1所在直線分別為x軸、y軸、z軸建立空間直角坐標(biāo)系,
如圖,則A(3,0,0),B(0,3,0),B1(0,1,$\sqrt{3}$),O1(0,0,$\sqrt{3}$).
由(1)知BO1⊥平面OA B1,從而$\overrightarrow{B{O_1}}$是平面OA B1的一個(gè)法向量.
$\overrightarrow{B{O_1}}=(0,-3,\sqrt{3})$,$\overrightarrow{A{O_1}}=(-3,0,\sqrt{3})$,
設(shè)直線AO1與平面AOB1所成的角為α,
$sinα=|{cos<\overrightarrow{A{O_1}},\overrightarrow{B{O_1}}>}|=\frac{3}{{2\sqrt{3}•2\sqrt{3}}}=\frac{1}{4}$.cosα=$\sqrt{1-(\frac{1}{4})^{2}}$=$\frac{\sqrt{15}}{4}$,
tanα=$\frac{sinα}{cosα}$=$\frac{\sqrt{15}}{15}$.
∴直線AO1與平面AOB1所成的角的正切值為$\frac{\sqrt{15}}{15}$.…(8分)
(3)由(II)知$\overrightarrow{B{O_1}}$是平面OA B1的一個(gè)法向量.且$\overrightarrow{B{O_1}}=(0,-3,\sqrt{3})$,
設(shè)$\overrightarrow n=(x,y,z)$是平面O1A B1的一個(gè)法向量,
由$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{A{B_1}}=0\\ \overrightarrow n•\overrightarrow{{O_1}{B_1}}=0\end{array}\right.⇒\left\{\begin{array}{l}-3x+y+\sqrt{3}z=0\\ y=0.\end{array}\right.,取z=\sqrt{3}$,得$\overrightarrow n=(1,0,\sqrt{3})$.
設(shè)二面角O-AB1-O1的大小為,
則cosθ=cos<,$\overrightarrow{B{O_1}}$>=
即二面角O-AB1-O1的余弦值是$\frac{{\sqrt{3}}}{4}$.…(13分)
點(diǎn)評(píng) 本題考查異面直線垂直的證明,考查線面角的正切值的求法,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0.1 | B. | 0.01 | C. | 0.9 | D. | 0.99 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題
已知定義在上的奇函數(shù)滿足,當(dāng)時(shí),,則( )
A. B.
C.-1 D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com